1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
2 years ago
7

On average, how many stars would we have to search before we would expect to hear a signal? assume there are 500 billion stars i

n the galaxy.
Physics
1 answer:
Keith_Richards [23]2 years ago
7 0

We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.

To find out the number of stars that we will need to search to find a signal, we need to use the following formula:

  • total of stars/civilizations
  • 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)

This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.

Note: This question is incomplete; here is the complete question.

On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.

Assuming 100 civilizations existed.

Learn more about stars in: brainly.com/question/2166533

You might be interested in
A flywheel in a motor is spinning at 590 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75
Gnom [1K]

Answer:

Explanation:

Hello,

Let's get the data for this question before proceeding to solve the problems.

Mass of flywheel = 40kg

Speed of flywheel = 590rpm

Diameter = 75cm , radius = diameter/ 2 = 75 / 2 = 37.5cm.

Time = 30s = 0.5 min

During the power off, the flywheel made 230 complete revolutions.

∇θ = [(ω₂ + ω₁) / 2] × t

∇θ = [(590 + ω₂) / 2] × 0.5

But ∇θ = 230 revolutions

∇θ/t = (530 + ω₂) / 2

230 / 0.5 = (530 + ω₂) / 2

Solve for ω₂

460 = 295 + 0.5ω₂

ω₂ = 330rpm

a)

ω₂ = ω₁ + αt

but α = ?

α = (ω₂ - ω₁) / t

α = (330 - 590) / 0.5

α = -260 / 0.5

α = -520rev/min

b)

ω₂ = ω₁ + αt

0 = 590 +(-520)t

520t = 590

solve for t

t = 590 / 520

t = 1.13min

60 seconds = 1min

X seconds = 1.13min

x = (60 × 1.13) / 1

x = 68seconds

∇θ = [(ω₂ + ω₁) / 2] × t

∇θ = [(590 + 0) / 2] × 1.13

∇θ = 333.35 rev/min

8 0
3 years ago
What holds the moon in place, orbiting around the Earth
AnnZ [28]

The Earth's gravity keeps the Moon orbiting us. It keeps changing the direction of the Moon's velocity. This means gravity makes the Moon accelerate all the time, even though its speed remains constant.

4 0
2 years ago
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
3 years ago
Write down an example scenario of an object that has acceleration
Grace [21]

Answer:

An object which experiences either a change in the magnitude or the direction of the velocity vector can be said to be accelerating. This explains why an object moving in a circle at constant speed can be said to accelerate - the direction of the velocity changes.

if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Explanation:

5 0
2 years ago
.
Dmitry [639]

Answer: 176.4 J

Explanation:

5 0
2 years ago
Other questions:
  • A football wide receiver rushes 16 m straight down the playing field in 2.9 s (in the positive direction). He is then hit and pu
    5·1 answer
  • A 72 kg skydiver is descending on a parachute. His speed is still increasing at 1.2 m/s2. What are the magnitude and direction o
    15·1 answer
  • HELP ME ASAP!!!!100 points!!!!!<br><br><br><br><br>How do you get your fingers in the Labia?
    9·2 answers
  • A horizontal desk surface measures 1.7 m by 1.0 m. If the Earth's magnetic field has magnitude 0.42 mT and is directed 68° below
    14·1 answer
  • When a simple magnifying glass is used properly, the image will be formed
    9·1 answer
  • Four distinguishable particles move freely in a room divided into octants (there are no actual partitions). Let the basic states
    6·1 answer
  • The food calorie, equal to 4186 J, is a measure of how much energy is released when food is metabolized by the body. A certain b
    6·1 answer
  • Is muddy water a substance?
    7·2 answers
  • GIVING BRAINLIEST PLEASE HELP!!
    9·1 answer
  • Given that the radius of the moon is roughly one-quarter that of the earth, find the mass of the moon in terms of the mass of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!