B) equal in magnitude but opposite direction
Answer:


Explanation:
Impulse and Momentum
They are similar concepts since they deal with the dynamics of objects having their status of motion changed by the sudden application of a force. The momentum at a given initial time is computed as

When a force is applied, the speed changes to
and the new momentum is

The change of momentum is

The impulse is equal to the change of momentum of an object and it's defined as the average net force applied times the time it takes to change the object's motion

Part 1
The T-ball initially travels at 10 m/s and then suddenly it's stopped by the glove. The final speed is zero, so

The impulse is


The magnitude is

Part 2
The force can be computed from the formula

The direction of the impulse the T-ball receives is opposite to the direction of the force exerted by the ball on the glove, thus 


R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω
Answer:
the release will be at 3.266 m distance
Explanation:
mass = 1 Kg
spring constant (k) = 800 N/m
initial compression = 0.20 m
θ = 30⁰



hence the release will be at 3.266 m distance.
Answer:
h = v₀ g / a
Explanation:
We can solve this problem using the kinematic equations. As they indicate that the air does not influence the vertical movement, we can find the time it takes for the body to reach the floor
y =
t - ½ g t²
The vertical start speed is zero
t² = 2t / g
The horizontal document has an acceleration, with direction opposite to the speed therefore it is negative, the expression is
x = v₀ₓ t - ½ a t²
Indicates that it reaches the same exit point x = 0
v₀ₓ t = ½ a t2
v₀ₓ = ½ a (2h / g)
v₀ₓ = v₀
h = v₀ g / a