Answer:
9.81 × 10⁻¹⁰ C
Explanation:
Given:
Distance between the tissue and the tip of the scale, r = 6 cm = 0.06 m
Charge on the ruler, Q = - 12 μC = - 12 × 10⁻⁶ C
Mass of the tissue = 3 g = 0.003 Kg
Now,
The force required to pick the tissue, F = mg
where, g is the acceleration due to gravity
also,
The force between (F) the charges is given as:

where,
q is the charge on the tissue
k is the Coulomb's constant = 9 × 10⁹ Nm²/C²
thus,

on substituting the respective values, we get

or
q = 9.81 × 10⁻¹⁰ C
Minimum charge required to pick the tissue paper is 9.81 × 10⁻¹⁰ C
The distance in meters she would have moved before she begins to slow down is 11.25 m
<h3>
LINEAR MOTION</h3>
A straight line movement is known as linear motion
Given that Ann is driving down a street at 15 m/s. Suddenly a child runs into the street. It takes Ann 0.75 seconds to react and apply the brakes.
To know how many meters will she have moved before she begins to slow down, we need to first list all the given parameters.
From definition of speed,
speed = distance / time
Make distance the subject of the formula
distance = speed x time
distance = 15 x 0.75
distance = 11.25m
Therefore, the distance in meters she would have moved before she begins to slow down is 11.25 m
Learn more about Linear motion here: brainly.com/question/13665920
Answer:

Explanation:
F = Force = 
m = Mass of proton = 
t = Time taken = 
Acceleration is given by


The velocity of the proton is 
Kinetic energy is the energy associated with the motion of an object. It's a scalar quantity, there is no direction associated with KE and it has no components.

.
Therefore Kinetic energy is 817.96J.