Answer :
(a). The speed of the block is 0.395 m/s.
(b). No
Explanation :
Given that,
Diameter = 20.0 cm
Power = 26.0 MW
Mass = 110 kg
diameter = 20.0 cm
Distance = 100 m
We need to calculate the pressure due to laser
Using formula of pressure

![P_{r}=\dfrac{P}{Ac}Put the value into the formula[tex]P_{r}=\dfrac{26.0\times10^{6}}{\pi\times(10\times10^{-2})^2\times3\times10^{8}}](https://tex.z-dn.net/?f=P_%7Br%7D%3D%5Cdfrac%7BP%7D%7BAc%7D%3C%2Fp%3E%3Cp%3EPut%20the%20value%20into%20the%20formula%3C%2Fp%3E%3Cp%3E%5Btex%5DP_%7Br%7D%3D%5Cdfrac%7B26.0%5Ctimes10%5E%7B6%7D%7D%7B%5Cpi%5Ctimes%2810%5Ctimes10%5E%7B-2%7D%29%5E2%5Ctimes3%5Ctimes10%5E%7B8%7D%7D)

We need to calculate the force
Using formula of force


Put the value into the formula


We need to calculate the acceleration
Using formula of force

Put the value into the formula




(a). We need to calculate speed of the block
Using equation of motion

Put the value into the formula


(b). No because the velocity is very less.
Hence, (a). The speed of the block is 0.395 m/s.
(b). No
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m
Answer:
Explanation:
Given
mass of wheel m=13 kg
radius of wheel=1.8 m
N=469 rev/min

t=16 s
Angular deceleration in 16 s


Moment of Inertia 
Change in kinetic energy =Work done
Change in kinetic Energy

(a)Work done =50.79 kJ
(b)Average Power

Answer: <u>elastically</u> deformed or <u>non-permanently</u> deformed
Explanation:
According to classical mechanics, there are two types of deformations:
-Plastic deformation (also called irreversible or permanent deformation), in which the material does not return to its original form after removing the applied force, therefore it is said that the material was permanently deformed.
This is because the material undergoes irreversible thermodynamic changes while it is subjected to the applied forces.
-Elastic deformation (also called reversible or non-permanent deformation), in which the material returns to its original shape after removing the applied force that caused the deformation.
In this case t<u>he material also undergoes thermodynamic changes, but these are reversible, causing an increase in its internal energy by transforming it into elastic potential energy.</u>
<u />
Therefore, the situation described in the question is related to elastic deformation.
Answer: Drink water, practice, do some light stretches
Explanation: