Gle's cache of http://www.middleschoolchemistry.com/lessonplans/chapter5/lesson4<span>. It is a snapshot of the page as it appeared on 21 Oct 2017 07:24:57 GMT.</span>
C. pain reliever
ex. tylenol, aleve, etc.
Answer:
Mass of water = 73.08 g
Explanation:
Given data:
Mass of hydrogen = 35 g
Mass of oxygen = 65 g
Mass of water = ?
Solution:
First of all we will write the balanced chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass/ molar mass
Number of moles of hydrogen = 35 g/ 2 g/mol
Number of moles of hydrogen = 17.5 mol
Number of moles of oxygen = 65 g / 32 g/mol
Number of moles of oxygen = 2.03 moles
Now we compare the moles of water with moles hydrogen and oxygen.
H₂ : H₂O
2 : 2
17.5 : 17.5
O₂ : H₂O
1 : 2
2.03 : 2× 2.03 =4.06 mol
Number of moles of water produced by oxygen are less so oxygen is limitting reactant.
Mass of water:
Mass of water = number of moles × molar mass
Mass of water = 4.06 mol × 18 g/mol
Mass of water = 73.08 g
Answer:
True
Explanation:because of the motion
To determine the amount of 6.0 M H2SO4 needed for the preparation, equate the number of moles of the 6.0 M and 2.5 M H2SO4 solution. This is done as follows
M1 x V1 = M2 x V2
Substituting the known variables,
(6.0 M) x V1 = (2.5 M) x (4.8 L)
Solving for V1 gives an answer of V1 = 2 L. Thus, to prepare the needed solution, dilute 2 L of 6.0 M H2SO4 solution with water until the volume reach 4.8 L.