Answer:
[O₃]= 8.84x10⁻⁷M
Explanation:
<u>The photodissociation of ozone by UV light is given by:</u>
O₃ + hν → O₂ + O (1)
<u>The first-order reaction of the equation (1) is:</u>
(2)
<em>where k: is the rate constant and Δ[O₃]/Δt: is the variation in the ozone concentration with time, and the negative sign is by the decrease in the reactant concentration </em>
<u>We can get the following expression of the </u><u>first-order integrated law</u><u> of the reaction (1), by resolving the equation (2):</u>
(3)
<em>where [O₃](t): is the ozone concentration in the elapsed time and [O₃]₀: is the initial ozone concentration</em>
We can calculate the initial ozone concentration using equation (3):
So, the ozone concentration after 10 days is 8.84x10⁻⁷M.
I hope it helps you!
So if it is 2.35L at the temperature 20.0^C and you want the volume at -5.00^C this is hw you would solve it for example 20.0^C to 2.00L it would be 10 degrees per Liter so it would be here 10 degrees every liter so you would do 20.0 % 2.35 = / then find the answer and then find out how many degrees that answer is off of -5.00 then once you get that divide -5.00 with that answer.<span>
</span>
Answer:
332.918g O2
Explanation:
I'm having some issues with the work however, your final answer should be 332.918g O2
Hope this helped!
Answer:
A) hydrogen bonds cause a high surface tension = FALSE
Explanation:
The rest are correct
A) Temperature does not affect reaction rate