1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slega [8]
3 years ago
9

A 3.5-g sample of colorado oil shale is burned in a bomb calorimeter, which causes the temperature of the calorimeter to increas

e by 5.0°c. the calorimeter contains 1.00 kg of water (heat capacity of h2o = 4.184 j/g°c) and the heat capacity of the empty calorimeter is 0.10 kj/°c. how much heat is released per gram of oil shale when it is burned?
Chemistry
2 answers:
Wewaii [24]3 years ago
8 0

The amount of energy released when one gram of oil is burned is\boxed{{\text{6}}{\text{.12 kJ}}}.

Further explanation

Heat capacity is defined as the amount of heat required to change the temperature of a pure substance by one degree. Its S.I. unit is J/K.

Molar heat capacity is defined as the amount of heat required to raise the temperature of one mole of substance by one degree. Specific heat capacity is defined as the amount of heat needed to increase the temperature of 1 gram of a pure substance by one degree.

The expression to calculate amount of heat released or absorbed as follows:

{\text{q}}={\text{mC}}\Delta{\text{T}}                                       …… (1)

Here, q is the amount of heat.

m is the mass of substance.

C is specific heat.

\Delta{\text{T}}is change temperature.

Calorimeter is the device that measures the change in amount of heat absorbed or released during chemical reaction followed by change in temperature. Bomb calorimeter is the device which measure the amount of heat absorbed or released during chemical reaction at constant volume.

The formula to calculate the amount of heat change in calorimeter is as follows:

{{\text{q}}_{{\text{calorimeter}}}}={{\text{C}}_{{\text{calorimeter}}}}\times\Delta{{\text{T}}_{{\text{calorimeter}}}}              …… (2)

The expression to calculate amount of heat absorbed by water is as follows:

{\text{q}}=\left({{{\text{m}}_{{\text{water}}}}}\right)\left({{{\text{C}}_{{\text{water}}}}}\right)\left({\Delta{\text{T}}}\right)                                                …… (1)

Given, {{\text{C}}_{{\text{water}}}} is 4.184 {\text{J/g}}\cdot^\circ{\text{C}}.

{{\text{m}}_{{\text{water}}}}is 1 kg.

Change in temperature \left({\Delta{\text{T}}}\right)is 5\;^\circ{\text{C}}.

Substitute the value of {{\text{C}}_{{\text{water}}}}, {{\text{m}}_{{\text{water}}}} and \Delta{\text{T}}in equation (1).

\begin{aligned}{{\text{q}}_{{\text{water}}}}&=\left({{\text{1}}\;{\text{kg}}}\right)\left({\frac{{1000\;{\text{g}}}}{{{\text{1}}\;{\text{kg}}}}}\right)\left({\frac{{{\text{4}}{\text{.184 J}}}}{{{\text{g}}\cdot ^\circ{\text{C}}}}}\right)\left({5\;^\circ{\text{C}}}\right)\\&{\text{=20920 J}}\\\end{aligned}

The amount of heat absorbed by water is 20920 J.

The value of {{\text{C}}_{{\text{calorimeter}}}}is0.10\;{\text{kJ/}}^\circ{\text{C}}.

The value of \Delta{{\text{T}}_{{\text{calorimeter}}}}is {5^\circ}{\text{C}}.

Substitute these values in equation (2).

\begin{aligned}{{\text{q}}_{{\text{calorimeter}}}}&=\left({\frac{{0.10\;{\text{kJ}}}}{{^\circ{\text{C}}}}}\right)\times 5\;^\circ{\text{C}}\\&={\text{0}}{\text{.50 kJ}}\\\end{aligned}

Amount of heat absorbed by calorimeter is{\mathbf{0}}{\mathbf{.50 kJ}}.

The formula to calculate the total amount of heat released to burn 3.5 g of sample is as follows:

- {{\text{q}}_{{\text{rxn}}}}={{\text{q}}_{{\text{water}}}}+{{\text{q}}_{{\text{calorimeter}}}}                   …… (3)

Substitute 20920 J for {{\text{q}}_{{\text{water}}}} and 0.50 J for {{\text{q}}_{{\text{calorimeter}}}} in equation (3)

\begin{aligned}-{{\text{q}}_{{\text{rxn}}}}&=20920{\text{ J}}+{\text{0}}{\text{.50 kJ}}\left({\frac{{1000\;{\text{J}}}}{{{\text{1}}\;{\text{kJ}}}}}\right)\\&={\text{21420 J}}\\\end{aligned}

The total amount of energy released to burn 3.5 g of oil is 21420 J.

The amount of energy released to burn 1 g of oil is calculated as follows:

\begin{aligned}{\text{Energy released per gram}}&=\frac{{21420{\text{ J}}}}{{3.5{\text{ g}}}}\\&={\text{6120 J}}\\\end{aligned}

The conversion factor to convert energy from J to kJ is as follows:

1{\text{ kJ}}={\text{1000}}\;{\text{J}}

The amount of energy released after one gram of oil gets burned is calculated as follows:

\begin{aligned}{\text{Energy released per gram}}\left({{\text{kJ}}}\right)&=\left({{\text{1 kJ}}}\right)\left({\frac{{{\text{6120 J}}}}{{{\text{1000J}}}}}\right)\\&={\text{6}}{\text{.12 kJ}}\\\end{aligned}

Hence, {\mathbf{6}}{\mathbf{.12 kJ}} of energy is released when one gram of oil is burned.

Learn more:

1. Which is most likely a covalent compound brainly.com/question/2083444.

2. Calculate the pH of 0.1 m compoundhttps://brainly.com/question/2114744.

Answer details:

Grade: Senior school.

Subject: Chemistry.

Chapter: Thermodynamics

Keywords: Heat capacity, molar heat capacity, specific heat capacity, released, absorbed, calorimeter, bomb calorimeter, water, mass, temperature, degree, 6.12 kj, 6120 j, 0.50 and 2120 J.

Lubov Fominskaja [6]3 years ago
3 0
<span>q(rxn) = - [q(water)+q(bomb)] q(rxn) = -{[ (1000g)(4.184)(5.0)] + [ (5.0)(0.10)]} q(rxn) = - (20920 + 0.5) Now we divide 3.5g q(rxn)= - (20920)/(3.5g) q(rxn) = 5977.14 And final answer, change is to Kilo joule unit -q(rxn) = 5.23 KJ/unit</span>
You might be interested in
Identify the true statement(s). There may be one answer or more than one answer.FADH2 is a reducing agent. FADH2 is an oxidizing
adell [148]

Answer:

FADH2 is a reducing agent.

FAD is an oxidizing agent.

Explanation:

The full form of FAD is flavin adenine dinucleotide. It is mainly a redox-active coenzyme which is associated with the different proteins and is involved with the enzymatic reactions in the metabolism.

FAD is obtained by donating or accepting electrons.

In the citric acid cycle,

succinate + FAD → fumarate + $FADH_2$

Thus we see that FAD is an oxidizing agent while $FADH_2$ is a reducing agent.      

8 0
3 years ago
Increasing order of unsaturation
Basile [38]

Whats the question? Im not sure what your asking

7 0
3 years ago
Most atoms have no net charge because they have
Ne4ueva [31]

Atoms have no electric charge because the protons and electrons "cancel out" each others charges. Neutrons have no charge. What is the atomic number of an element? The atomic number is the number of protons in the atom's nucleus.

Hope this helps have a great day :)

6 0
3 years ago
Read 2 more answers
What is Heredity
Archy [21]

It's option D heredity is the passing of traits from parent of offspring.

8 0
3 years ago
Read 2 more answers
Calculate the solubility of o2 in water at a partial pressure of o2 of 120 torr at 25 ̊c. the henry's law constant for o2 at 25
Vladimir79 [104]

Answer:

1) 2.054 x 10⁻⁴ mol/L.

2) Decreasing the temperature will increase the solubilty of O₂ gas in water.

Explanation:

1) The solubility of O₂ gas in water:

  • We cam calculate the solubility of O₂ in water using Henry's law: <em>Cgas = K P</em>,
  • where, Cgas is the solubility if gas,
  • K is henry's law constant (K for O₂ at 25 ̊C is 1.3 x 10⁻³ mol/l atm),
  • P is the partial pressure of O₂ (P = 120 torr / 760 = 0.158 atm).
  • Cgas = K P = (1.3 x 10⁻³ mol/l atm) (0.158 atm) = 2.054 x 10⁻⁴ mol/L.

2) The effect of decreasing temperature on the solubility O₂ gas in water:

  • Decreasing the temperature will increase the solubilty of O₂ gas in water.
  • When the temperature increases, the solubility of O₂ gas in water will decrease because the increase in T will increase the kinetic energy of gas particles and increase its motion that will break intermolecular bonds and escape from solution.
  • Decreasing the temperature will increase the solubility of O₂ gas in water will because the kinetic energy of gas particles will decrease and limit its motion that can not break the intermolecular bonds and increase the solubility of O₂ gas.


6 0
3 years ago
Read 2 more answers
Other questions:
  • Use the information below to answer the following questions.
    6·1 answer
  • The equilibrium concentrations of the reactants and products are [ HA ] = 0.260 M [HA]=0.260 M , [ H + ] = 2.00 × 10 − 4 M [H+]=
    11·1 answer
  • Which mass of oxygen completely reacts with 4.0 grams of hydrogen to produce 36.0 grams of water
    15·2 answers
  • Fill in the coefficients that will balance the following reaction:
    6·1 answer
  • Almost all characteristics of a star are determined by its
    11·1 answer
  • 1. Which occurs when the forward and reverse reactions occur at the same rate?
    5·2 answers
  • If two clear liquids are mixed and a precipitate formed, what has probably happened?
    15·2 answers
  • What is the mass of 6.02 × 10²³ hydrogen atoms​
    6·1 answer
  • C3H8 +502 + 3CO2 + 4H2O
    11·1 answer
  • Which state of matter has the most movement of its particles?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!