Answer:
1-Chloropropane is likely the answer (attached a picture)
Explanation:
First off there are 3 peaks and 3 carbons which indicates to me that this will be a chain without any symmetry and that each carbon has hydrogens on it.
Second the triplet at 1.0 that integrates to 3 likely correlates to a CH3 (methyl) group. Peaks are very upfield triplets that integrate to three are almost always methyl peaks.
Third the triplet at 3.7 is indicative of being next to the halogen. Hydrocarbons by themselves do not have peaks that far downfield meaning that its shift could only be explained by the chlorine being involved. Also we know that this can't be next to the methyl group since its multiplicity is to low to be next to it.
That leaves the multiplet at 1.75 being the hydrogens on the middle carbon which also makes sense since it is more downfield then the methyl group (due to being closer to the chlorine) but is not far enough downfield to say the chlorine is there. It also makes sense that it is a multiple since it would be a hextet due to the adjacent 5 hydrogens which can't always be resolved.
I hope this helps and let me know if anything is unclear or needs further explanation.
Thank you for posting your question here brainly. Based on the problem mentioned above the largest mass that water molecule could have using other isotopes is <span>24 amu. Below is the solution, I hope the answers helps.
</span><span>T2_18O = 24</span>
Protons are positively charged. Neutrons have no charge. Electrons have a negative charge. Protons and neutrons are in the nucleus. Electrons revolve around the nucleus.
Answer:
In chemistry, pH (/piːˈeɪtʃ/) (abbr. power of hydrogen or potential for hydrogen) is a scale used to specify how acidic or basic a water-based solution is. Acidic solutions have a lower pH, while basic solutions have a higher pH.
Explanation:
that should answer ur question