The equilibrium constant (Kc) is the product of the equilibrium concentrations of the products raised to their corresponding stoichiometric coefficients divided by the reactants as well. In this case the equilibrium concentration of Cl2 which also applies to SO2 is 1.3x10^-2. The final equilibrium concentration of SO2Cl2 is 9x10^-3. Kc is then equal to 0.0188.
Answer:
2 mole of Sodium hydroxide reacts with 1 mole of Sulfuric acid
Explanation:
Write down the equation in the beginning with reactants and products:
NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Now try to balance it. Try with Na first:
2NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Na atoms are balanced. There are 6 Oxygen atoms on the right and 5 on the left. Balance by increasing the H₂O moles:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
Check if H atoms are also balanced. They are. That means our final reaction is:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
2 Moles of NaOH reacts with 1 mole of H₂SO₄
To insert a thermometer into an adapter, use <u>mineral oil</u> to prepare the thermometer. Then, hold the thermometer <u>close to</u> the adapter and<u> slowly turn</u> the thermometer into the adapter.
The term "temperature" refers to a measurement of how cold or hot an actual physical object is. It is measured with a thermometer, which gives readings in Celsius, Kelvin, and Fahrenheit (°C, K, and °F).
The average kinetic energy of the particles in a given substance is often measured by temperature. A thermometer is a tool used to gauge a substance's or a body's temperature (degree of hotness or coolness). It is a bulb-shaped piece of thin glass that usually contains either coloured alcohol or mercury.
In order to get readings throughout the distillation process, a thermometer adapter is used with a temperature probe. Use mineral oil to prepare or make the thermometer suitable before inserting it into the adapter. After that, slowly insert the thermometer into the adaptor while holding it close to it.
Learn more about thermometer:
brainly.com/question/2339046
#SPJ4
I think It’s 55 but that’s just me
Answer:
<u>C) 4</u>
Explanation:
<u>The reaction</u> :
- C (s) + 2H₂ (g) ⇒ CH₄ (g)
12g 4g 16g
Hence, based on this we can say that : <u>2 moles of hydrogen gas are needed to produce 16g of methane.</u>
<u />
<u>For 32g of methane</u>
- Number of moles of H₂ = 32/16 × 2
- Number of moles of H₂ = <u>4</u>