Answer:
potassium hydrogen phthalate KHP MOLAR MASS = 204.233 glmol
to get 1000 ml
Molar concentration = Mass concentration/Molar Mass
mass concentration = molar concentration x molar mass
mass concentration=0.1 M,
molar mass= 204.233 g/mol
so to get 1L
mass conc = 204.233 x 0.1
= 20.4233g for 1L or 1000 ml
to get 6.00 ml
if 20.4233g is for 1000ml
then to 6.00 ml
= 20.4233 x 6 / 1000
= 0.123g for 6.00 ml
according to the equation below
NaOH(aq) + KHC8H4O4(aq) --> KNaC8H4O4(aq) + H2O(l)
number of moles of NaOH is equal to that of KHP
so the same amount will be needed too, which is
= 0.123g
The brick is solid because it's not hollow or containing spaces or gaps
Answer:
0.0125mol
Explanation:
Molarity (M) = number of moles (n) ÷ volume (V)
n = Molarity × Volume
According to this question, a 0.05M solution contains 250 mL of NaOH. The volume in litres is as follows:
1000mL = 1L
250mL = 250/1000
= 0.250L
n = 0.05 × 0.250
n = 0.0125
The number of moles of NaOH is 0.0125mol.
Answer:
Compound B has greater molar mass.
Explanation:
The depression in freezing point is given by ;
..[1]

Where:
i = van't Hoff factor
= Molal depression constant
m = molality of the solution
According to question , solution with 5.00 g of A in 100.0 grams of water froze at at lower temperature than solution with 5.00 g of B in 100.0 grams of water.
The depression in freezing point of solution with A solute: 
Molar mass of A = 
The depression in freezing point of solution with B solute: 
Molar mass of B = 

As we can see in [1] , that depression in freezing point is inversely related to molar mass of the solute.


This means compound B has greater molar mass than compound A,