The block has the greatest average power provided is bock m.
<h3>What is instantaneous power?</h3>
- This is the product of force and velocity exerted on an object.
Mathematically instantaneous power is calculated as;
P = Fv
where;
- F is the applied force
- v is the velocity
Both blocks (m and 2m) will experience the same force but different velocity.
The smaller block (m) will experience greater velocity.
Thus, the block has the greatest average power provided is bock m.
Learn more about instantaneous power here: brainly.com/question/8893970
Answer:
e. All of these statements are false.
Explanation:
As we know that heat transfer take place from high temperature to low temperature.
It is possible to convert all work into heat but it is not possible to convert all heat in to work some heat will be reject to the surrounding.
The first law of thermodynamics is the energy conservation law.
Second law of thermodynamics states that it is impossible to construct a device which convert all energy into work without rejecting the heat to the surrounding.
By using heat pump ,heat can transfer from cooler body to the hotter body.
Therefore all the answer is False.
Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.
Answer:

Work done = = 5 kJ
Explanation:
Given data:
volume of nitrogen 



Polytropic exponent n = 1.4
![\frac{T_2}{T_1} = [\frac{P_2}{P_1}]^{\frac{n-1}{n}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7BT_1%7D%20%3D%20%5B%5Cfrac%7BP_2%7D%7BP_1%7D%5D%5E%7B%5Cfrac%7Bn-1%7D%7Bn%7D)
putting all value
![\frac{T_2}{473} = [\frac{80}{150}]^{\frac{1.4-1}{1.4}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7B473%7D%20%3D%20%5B%5Cfrac%7B80%7D%7B150%7D%5D%5E%7B%5Cfrac%7B1.4-1%7D%7B1.4%7D)

polytropic process is given as



work done 

= 5 kJ
Answer:
you use the Ohms law so to find the voltage you would need to multiply the current by the resistance which gives you the power.
V- voltage
I- current
R- resistance
V= I×R