1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
2 years ago
7

Burning fossil fuels and other human activities release greenhouse gases into the atmosphere. Greenhouse gas levels in the atmos

phere are increasing, and global temperatures are increasing. Does this logically follow that human activities are causing global temperatures to rise? Is there a different explanation that fits with this?
Physics
1 answer:
oksano4ka [1.4K]2 years ago
6 0

Answer: no

Explanation:

You might be interested in
What kind of surface is suitable for infared radiation
nlexa [21]

Answer:

Different surfaces

<h3>You can see that dull surfaces are good absorbers and emitters of infrared radiation. Shiny surfaces are poor absorbers and emitters (but they are good reflectors of infrared radiation</h3>
8 0
3 years ago
Which type of energy is commonly referred to as kinetic energy?
aksik [14]
Kinetic Energy is movement energy (most simplistic way I can put it) so its motion. 
3 0
3 years ago
Read 2 more answers
If the accepted value of a wave is 121 m/s, who has the most accurate method of measuring the speed of a wave?
qaws [65]
The answer would be erin out of all of them thank me later :)
5 0
3 years ago
Suppose you have two solid bars, both with square cross-sections of 1 cm2. They are both 24.6 cm long, but one is made of copper
vodka [1.7K]

Explanation:

Expression to calculate thermal resistance for iron (R_{I}) is as follows.

             R_{I} = \frac{L_{I}}{k_{I} \times A_{I}}  

where,   L_{I} = length of the iron bar

             k_{I} = thermal conductivity of iron

             A_{I} = Area of cross-section for the iron bar

Thermal resistance for copper (R_{c}) = \frac{L_{c}}{k_{c} \times A_{c}}[/tex]

where,  L_{c} = length of copper bar

             k_{c} = thermal conductivity of copper

            A_{c} = Area of cross-section for the copper bar

Now, expression for the transfer of heat per unit cell is as follows.

           Q = \frac{(100^{o} - 0^{o}}{\frac{L_{I}}{k_{I}.A_{I}} + \frac{L_{c}}{k_{c}.A_{c}}}

 Putting the given values into the above formula as follows.

       Q = \frac{(100^{o} - 0^{o})}{\frac{L_{I}}{k_{I}.A_{I}} + \frac{L_{c}}{k_{c}.A_{c}}}

  = \frac{(100^{o} - 0^{o})}{21 \times 10^{-2} m[\frac{1}{73 \times 10^{-4}m^{2}} + \frac{1}{386 \times 10^{-4}m^{2}}}

           = 2.92 Joule

It is known that heat transfer per unit time is equal to the power conducted through the rod. Hence,

                 P = \frac{Q}{T}

Here, T is 1 second so, power conducted is equal to heat transferred.

So,           P = 2.92 watt

Thus, we can conclude that 2.92 watt power will be conducted through the rod when it reaches steady state.

7 0
3 years ago
Which best describes why Keplers observation of planetary motion is a law instead of a theory
svet-max [94.6K]

Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.


5 0
3 years ago
Read 2 more answers
Other questions:
  • Jamie hears a high-pitched sound that then changes to a low-pitched sound. What is most likely occurring?
    13·2 answers
  • At what point in a waterfall, do the drops of water contain the most gravitational potential energy?
    5·1 answer
  • If a storm is 7.5 kilometers away, how much time is expected between observations of lightning and thunder? Round your answer to
    5·1 answer
  • Why do no stores sell dethatching mower blades with metal springs?
    7·1 answer
  • A stone is dropped from a tower 100 meters above the ground. The stone falls past ground level and into a well. It hits the wate
    15·1 answer
  • A car in motion has kinetic energy. What happens to the kinetic energy when the car brakes to a stop? The kinetic energy is tran
    15·1 answer
  • What properties of a sound wave determine volume, pitch, and timbre?
    14·2 answers
  • 1. Discuss how we use trial and error, algorithms, heuristics, and insight to solve problems. For each concept, define the term
    9·1 answer
  • I love you thanks for help❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️solveeeeee❤️❤️❤️❤️❤️❤️plzzzzz
    9·2 answers
  • How can you get acceleration when talking about speed?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!