Answer:
(a) The second wire will be stretched by 2 mm
(b) The third wire will be stretched by 0.25 mm
Explanation:
Tensile stress on every engineering material is given as the ratio of applied force to unit area of the material.
σ = F / A
Tensile strain on every engineering material is given as the ratio of extension of the material to the original length
δ = e / L
The ratio of tensile stress to tensile strain is known as Young's modulus of the material.

<u></u>
<u>Part A</u>
cross sectional area and applied force are the same as the original but the length is doubled

The second wire will be stretched by 2 mm
<u>Part B</u>
a third wire with the same length but twice the diameter of the first

e₁ = ¹/₄ x 1 mm = 0.25 mm
The third wire will be stretched by 0.25 mm
Answer:
the correct answer is c) 23 g
Explanation:
The heat lost by the runner has two parts: the heat absorbed by sweat in evaporation and the heat given off by the body
Q_lost = - Q_absorbed
The latent heat is
Q_absorbed = m L
The heat given by the body
Q_lost = M
ΔT
where m is the mass of sweat and M is the mass of the body
m L = M c_{e} ΔT
m = M c_{e} ΔT / L
let's replace
m = 90 3.500 1.8 / 2.42 10⁶
m = 0.2343 kg
reduced to grams
m = 0.2342 kg (1000g / 1kg)
m = 23.42 g
the correct answer is c) 23 g
Each Celsius degree is the size of 1.8 Fahrenheit degrees. So you need dip your Fahrenheit thermometer into the sample, see where you're starting, and then warm it up to a temperature that reads (37.1 x 1.8) = 66.8 Fahreheit degrees higher.
Answer:
0.05081 kg
Explanation:
= Mass of blood
= 0.435 m/s
= Mass of subject and pallet = 54 kg
= Velocity of subject and pallet = 
In this system the linear momentum is conserved so,

The mass of blood is 0.05081 kg
Answer:
An estuary is the area where a river meets the sea or ocean, where fresh water from the river meets salt water from the sea.