Answer:
Charge on each is 2 x 10⁻¹⁰.
Explanation:
We know that Force between two point charges is given b the Coulomb's law as:
F = kq₁q₂/r^2
k = 9 x 10^9
r = 3.00 cm
= 0.03 m
q₁ = q₂
F = 4.00 x 10^-7
Rearranging the formula, we get:
F = k q²/r²
q² = Fr²/k
q² = 4 x 10⁻⁷ x 0.03²/(9x10⁹)
q² = 4 x 10⁻²⁰
q = 2 x 10⁻¹⁰
As there is force of repulsion between the charges, the charges must be both positive or both negative.
Your diagram should include four forces:
• the box's weight, pointing down (magnitude <em>w</em> = 43.2 N)
• the normal force, pointing up (mag. <em>n</em>)
• the applied force, pointing the direction in which the box is sliding (mag. <em>p</em> = 6.30 N, with <em>p</em> for "pull")
• the frictional force, pointing oppoiste the applied force (mag. <em>f</em> )
The box is moving at a constant speed, so it is inequilibrium and the net forces in both the vertical and horizontal directions sum to 0. By Newton's second law, we have
<em>n</em> + (-<em>w</em>) = 0
and
<em>p</em> + (-<em>f</em> ) = 0
So then the forces have magnitudes
<em>w</em> = 43.2 N
<em>n</em> = <em>w</em> = 43.2 N
<em>p</em> = 6.30 N
<em>f</em> = <em>p</em> = 6.30 N
<span>If a mouse and an elephant both run with the same kinetic energy, can you say ... 3. if a car traveling at60 km/h will skid 20 m when its brakes lock, how far will it skid if it is traveling at 120 km/h when its brakes lock? (This question is typical on ...</span><span>just get this and figure it out and this is your answer </span>
Answer:
The volume of the cylinder is 
Explanation:
Given that,
The height of the cylinder is 13 cm
Radius of the cylinder is 4 cm
We need to find the volume of the cylinder. The formula that is used to find the volume of a cylinder is given by :

So, the volume of the cylinder is 
Answer:
Part a)
F = 0.735 N
Part b)

Explanation:
As we know that mass of the cube is given as




Now we know that cube is floating in the water
So net force due to weight of the cube must be counter balanced by buoyancy force on the liquid
so we have



Part b)
Percentage of volume submerged into the liquid is given as



now percentage of submerged liquid is given as

