Answer:
C = 1.01
Explanation:
Given that,
Mass, m = 75 kg
The terminal velocity of the mass, 
Area of cross section, 
We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,
R = W
or

Where
is the density of air = 1.225 kg/m³
C is drag coefficient
So,

So, the drag coefficient is 1.01.
Answer:
1.
2.
3.The results from part 1 and 2 agree when r = R.
Explanation:
The volume charge density is given as

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.
1. Since the cylinder is very long, Gauss’ Law can be applied.

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

where ‘h’ is the length of the imaginary Gaussian surface.

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

3. At the boundary where r = R:

As can be seen from above, two E-field values are equal as predicted.
Answer:
72.1 m
Explanation:
Hello!
When the walker walks west, each block he walks will be of 100 m, so the walker walked 4*100m = 400 m west.
Similarly, when the walker walks south, he walks 20 meters per block, therefore, the walker walked 4*20 m = 80 m south.
Since the directions west and south are perpendicular, the distance between the start ad end point is:
d = √(400^2 + 80^2) m = 407.92 m
However the walker traveled 480 m
Therefore, the walker traveled 480 - 407.9 m = 72.1 m farther than the actual distance
Total distance: 56 meters. Magnitude and direction of displacement: 20 meters South.
Explanation:
The term distance refers to space between one point and other, or the total space a body or object covered while moving. In the case presented, this can be calculated by adding the partial distances given. This means the total distance is 56 meters as 26 meters + 18 meters + 12 meters = 56 meters.
On the other hand, displacement considers the distance from the initial position to the final position, and the direction of movement. This means partial distances should not be added but each movement should be considered according to the direction. The process is shown below:
-The first movement was 26 meters southward; this means by the end of this movement the distance between the initial position was 26 meters south.
- The second movement was 18 northward; this means the kayaker moved 18 meters towards the position. This changes the displacement to 8 meters South as 26 meters south - 18 meters north = 8 meters to the South.
-The last movement was 12 meters sound; this means the kayaker increased the distance from the original position 8 meters to the South + 12 meters to the South = 20 meters South (total displacement.)
Answer:
The man's total displacement is equal to 0.
Explanation:
Given that,
A man ran a 5 mile race. The race looped around a city park and back to the starting line.
We need to find the total displacement of the man.
We know that,
Displacement = shortest path covered
Also,
Displacement = final position - initial position
As it reaches back to its starting line, it means, the displacement is equal to 0.
Hence, the man's total displacement is equal to 0.