a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Answer:
Conductors have magnetic fields; insulators do not have magnetic fields. Conductors do not have magnetic fields; insulators do have magnetic fields. ... In a conductor, electric current cannot flow freely; in an insulator, it can flow freely.
Acceleration=force/mass=28/(10+4)=2m/s^2
force10kg=ma=10*2
force4kg=ma=(10*2)=20
the4 kg is pushing against the 10kg block
vf=vi+at
-10=20*28/14 * t
t=30/2=15sec
i hope this can help you.
Answer:
5.82812 rad/s
Explanation:
L = Length of meter stick = 1 m = 100 cm
= The center of mass of the stick = 
= Angular velocity
Moment of inertia of the system is given by

As the energy in the system is conserved

The maximum angular velocity is 5.82812 rad/s
Answer:
C) Unscrew one light. If the other lights turn off, it's a series circuit.
Explanation:
THIS IS THE COMPLETE QUESTION BELOW;
A strand of 10 lights is plugged into an outlet. How can you determine if the lights are connected in series or parallel? A) Unscrew one light. If the other lights stay on, it's a series circuit. B) Unplug the strand. If the first light stays on, it's a series circuit. C) Unscrew one light. If the other lights turn off, it's a series circuit. D) Cut the strand in half. If the plugged in half stays on, it's a series circuit.
SERIES CIRCUIT
In this circuit, the components there are in the same path, the entire circuit has the same current, each of the components posses different voltage drop. Hence, failure of one components to work, there will be break in entire circuit then other components cease to work.
PARALLEL CIRCUIT
This circuit has equal voltage drop across all the components, any problem in a component will not has effect on other components.
Therefore, if one want to determine if a light connection is in series or in parallel, one of the light can be unplugged if others stop working it means it's series, if other works it's parallel.