Answer:
Butanoic acid present in solution
Explanation:
In this case, we have a buffer solution of butanoic acid and sodium butanoate. In other words a reaction like this:
HC₄H₇O₂ + H₂O <------> C₄H₇O₂⁻ + H₃O⁺ Ka = 1.5x10⁻⁵
The low value of Ka means that this is a weak acid. So, after this, the NaOH is added to the solution.
The NaOH is a really strong base, so we might expect that the pH of the solution increase drastically, however this do not occur.
The reason for this is because the first thing to happen in this reaction is an acid base reaction.
The NaOH react with the butanoic acid still present in solution, because is a weak acid, so in solution, this acid is not completely dissociated into it's respective ions. So the butanoic acid reacts with the NaOH and the products:
HC₄H₇O₂ + NaOH <------> Na⁺C₄H₇O₂⁻ + H₂O
So, because of this, the pH increase but not much.
Once it becomes balanced.
What is the question? Explain what answer you need(
The answer is B. Thermal Conductivity
Answer:
The assumption is quite reasonable.........
A lightbulb contains Ar gas at a temperature of 295K and at a pressure of 75kPa. The light bulb is switched on, and after 30 minutes its temperature is 418 K. What is a numerical setup for calculating the pressure of the gas inside the light bulb at 418K?
Explanation:
P
1
T
1
=
P
2
T
2
given constant
n
, and constant
V
, conditions that certainly obtain with a fixed volume light bulb.
And so
P
2
=
P
1
T
1
×
T
2
=
75
⋅
k
P
a
295
⋅
K
×
418
⋅
K
≅
100
⋅
k
P
a
.
Had the light bulb been sealed at normal pressure during its manufacture, what do you think might occur when it is operated?