Hey there,
I hope this answer solves your doubt.
<u>S</u><u>t</u><u>e</u><u>p</u><u>-</u><u>b</u><u>y</u><u>-</u><u>s</u><u>t</u><u>e</u><u>p</u><u> </u><u>Expla</u><u>n</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u>
The question is asking if the bonds between Carbon and Chlorine in CCl4 will be single, double or triple bonds.
<em>(</em><em>The structure of CCl4 </em><em>i</em><em>s attached as picture. Check it</em><em>)</em>
As per image, the structure consists of <u>Singl</u><u>e</u><u> </u><u>b</u><u>o</u><u>n</u><u>d</u><u>s</u><u>.</u> It is <u>4 single bonds</u>.
Answer:
The heat required to change 25.0 g of water from solid ice to liquid water at 0°C is 8350 J
Explanation:
The parameters given are
The temperature of the solid water = 0°C
The heat of fusion, = 334 J/g
The heat of vaporization, = 2260 J/g
Mass of the solid water = 25.0 g
We note that the heat required to change a solid to a liquid is the heat of fusion, from which we have the formula for heat fusion is given as follows;
ΔH = m ×
Therefore, we have;
ΔH = 25 g × 334 J/g = 8350 J
Which gives the heat required to change 25.0 g of water from solid ice to liquid water at 0°C as 8350 J.
Answer:
density=6.74g/ml
:320g÷47.5ml
d=6.74g/ml
thank you
<em><u>I </u></em><em><u>hope</u></em><em><u> </u></em><em><u>this </u></em><em><u>is </u></em><em><u>helpful</u></em>
Answer: It passes through both mantle and core, but are slowed and refracted at the mantle / core boundary at a depth of 2900 km.
Explanation: