Answer:1) Volume of
required is 55.98 mL.
2) 0.62577 grams of
is produced.
Explanation:

1) Molarity of 
Volume of 
Molarity of 
Volume of 


According to reaction, 1 mole of
reacts with 3 mole of
, then, 0.0041985 moles of
will react with:
moles of
that is 0.0125955 moles.


Volume of
required is 55.98 mL.
2)

Number of moles of
According to reaction, 3 moles of
gives 1 mole of
, then 0.004485 moles of
will give:
moles of
that is 0.001495 moles.
Mass of
=
Moles of
× Molar Mass of 
= 0.001495 moles × 418.58 g/mol = 0.62577 g
0.62577 grams of
is produced.
You are beautiful just like me trust me i know<span />
Answer:
C- the breakdown of rock into sediment
Explanation:
Because sedimentary rocks have layers and are made of of those layers which are made up of the breakdown of rock into sediment.
hope this helps:)
Answer:
The answers are explained below
Explanation:
a)
Given: concentration of salt/base = 0.031
concentration of acid = 0.050
we have
PH = PK a + log[salt]/[acid] = 1.8 + log(0.031/0.050) = 1.59
b)
we have HSO₃⁻ + OH⁻ ------> SO₃²⁻ + H₂O
Moles i............0.05...................0.01.................0.031.....................0
Moles r...........-0.01.................-0.01................0.01........................0.01
moles f...........0.04....................0....................0.041.....................0.01
c)
we will use the first equation but substituting concentration of base as 0.031 + 10ml = 0.031 + 0.010 = 0.041
Hence, we have
PH = PK a + log[salt]/[acid] = 1.8 + log(0.041/0.050) = 1.71
d)
pOH = -log (0.01/0.510) = 1.71
pH = 14 - 1.71 = 12.29
e)
Because the buffer solution (NaHSO3-Na2SO3) can regulate pH changes. when a buffer is added to water, the first change that occurs is that the water pH becomes constant. Thus, acids or bases (alkali = bases) Additional may not have any effect on the water, as this always will stabilize immediately.