Answer:
How do you find the density of a liquid experiment?
To measure the density of a liquid you do the same thing you would for a solid. Mass the fluid, find its volume, and divide mass by volume. To mass the fluid, weigh it in a container, pour it out, weigh the empty container, and subtract the mass of the empty container from the full container.
When two magnets are brought near each other, like poles repel; opposite poles attract. When a magnet is brought near a piece of iron, the iron also gets attracted to the magnet, and it acquires the same ability to attract other pieces of iron.
Answer:
λ = 6.5604 x 1016 nm
Explanation:
Given Data:
The energy of the red line in Hydrogen Spectra = 3.03 x 10-19
Formula to calculate Wave length
E= hv
Where E is Energy
h is Planks Constant = 6.626 x 10–34 J s
v is frequency
In turn
v= c/ λ
where c is speed of light = 3.00 x 108 m s–1
λ is wavelength = to find
Solution:
Formula to be Used:
E= hv………………………… (1)
Putting the value v in equation 1
E= h c/ λ…………………… (2)
Put the value in equation 2
3.03 x 10-19 J = (6.626 x 10–34 J s) x (3.00 x 108 m s–1) / λ ……………………….(3)
By rearranging equation 3
λ = (6.626 x 10–34 J s) x (3.00 x 108 m s–1) /3.03 x 10-19 J
λ = 6.5604 x 107 m
The answer is in “m”
So we have to convert it into nm
So for this to convert “m” to “nm” multiply the answer with 109
λ = 6.5604 x 107 x 109
λ = 6.5604 x 1016 nm
Answer:
.
Explanation:
Electrons are conserved in a chemical equation.
The superscript of
indicates that each of these ions carries a charge of
. That corresponds to the shortage of one electron for each
ion.
Similarly, the superscript
on each
ion indicates a shortage of three electrons per such ion.
Assume that the coefficient of
(among the reactants) is
, and that the coefficient of
(among the reactants) is
.
.
There would thus be
silver (
) atoms and
aluminum (
) atoms on either side of the equation. Hence, the coefficient for
and
would be
and
, respectively.
.
The
ions on the left-hand side of the equation would correspond to the shortage of
electrons. On the other hand, the
ions on the right-hand side of this equation would correspond to the shortage of
electrons.
Just like atoms, electrons are also conserved in a chemical reaction. Therefore, if the left-hand side has a shortage of
electrons, the right-hand side should also be
electrons short of being neutral. On the other hand, it is already shown that the right-hand side would have a shortage of
electrons. These two expressions should have the same value. Therefore,
.
The smallest integer
and
that could satisfy this relation are
and
. The equation becomes:
.
A chemical equation does not give information about the following:
- It usually does not give the "state of the substances". There are three states: Solid(s), liquid(q) and gas(vap).
- The chemical equation does not show whether it is complete or incomplete.
- The "speed of the reaction" is not mentioned.
- The "concentration of the substance" whether it is diluted or concentrated is not mentioned.
- The "rate of the reaction", temperature, catalyst, pressure etc is not mentioned. These can be mentioned "above or below the arrow".