Answer:
From bottom to top, Troposphere, Stratosphere, Mesosphere, Thermosphere, & at the top, Exosphere.
Explanation:
Answer:
30.3 g
Explanation:
At STP, 1 mol of any gas will occupy 22.4 L.
With the information above in mind, we <u>calculate how many moles are there in 32.0 L</u>:
- 32.0 L ÷ 22.4 L/mol = 1.43 mol
Then we <u>calculate how many moles would there be in 16.6 L</u>:
- 16.6 L ÷ 22.4 L/mol = 0.741 mol
The <u>difference in moles is</u>:
- 1.43 mol - 0.741 mol = 0.689 mol
Finally we <u>convert 0.689 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 0.689 mol * 44 g/mol = 30.3 g
Isobaric transition, first law: <span>H=ΔU+w</span>
for a gas expansion: <span>w=<span>P<span>ext</span></span>∗ΔV</span>
to convert to joules, you need the gas constants.
R = 0.08206 L atm/mol*K, R=8.314 J/mol*K
<span>w=<span>P<span>ext</span></span>∗ΔV∗<span><span>8.314 J/mol∗K</span><span>0.08206 L atm/mol∗K</span></span></span>
<span>ΔU=ΔH−[<span>P<span>ext</span></span>∗ΔV∗<span><span>8.314 J/mol∗K</span><span>0.08206 L atm/mol∗K</span></span>]</span>
<span>ΔU=−75000 J−[(43.0atm)∗(2−5)L∗<span><span>8.314 J</span><span>0.08206 L atm</span></span>]</span>
Then you need to convert to kJ.
by the way U=E, internal energy.