The density of an object is defined as its mass divided by its volume. Mathematically, density = Mass / Volume. The unit of density is kilogram per cubic meter, kg / m^3 or g /cm^3.
For the question given above: the
Mass = 200.0 g
Volume = 100.0 cm^3
Therefore, Density = Mass / Volume = 200 / 100 = 2
Thus, the density of the object is 2 g /cm^3.
Answer: a) The concentration after 8.8min is 0.17 M
b) Time taken for the concentration of cyclopropane to decrease from 0.25M to 0.15M is 687 seconds.
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) concentration after 8.8 min:



b) for concentration to decrease from 0.25M to 0.15M


Answer:
all 4 of the middle ones are part of the nucleus
Using the Henderson-Hasselbalch equation on the solution before HCl addition: pH = pKa + log([A-]/[HA]) 8.0 = 7.4 + log([A-]/[HA]); [A-]/[HA] = 4.0. (equation 1) Also, 0.1 L * 1.0 mol/L = 0.1 moles total of the compound. Therefore, [A-] + [HA] = 0.1 (equation 2) Solving the simultaneous equations 1 and 2 gives: A- = 0.08 moles AH = 0.02 moles Adding strong acid reduces A- and increases AH by the same amount. 0.03 L * 1 mol/L = 0.03 moles HCl will be added, soA- = 0.08 - 0.03 = 0.05 moles AH = 0.02 + 0.03 = 0.05 moles Therefore, after HCl addition, [A-]/[HA] = 0.05 / 0.05 = 1.0 Resubstituting into the Henderson-Hasselbalch equation: pH = 7.4 + log(1.0) = 7.4, the final pH.
If the patient has to take 2 tablets every 8 hours for 7 days.
24/8=3 3*2=6
this means that he patient will have to take 6 tablets every day.
6*7=42 And the patient must take 42 tablets in all 7 days
Hope this helps! :)