The amount of heat needed to raise the temperature of a substance by

is given by

where
m is the mass of the substance
Cs is its specific heat capacity

is the increase in temperature
For oxygen, the specific heat capacity is approximately

The variation of temperature for the sample in our problem is

while the mass is m=150 g, so the amount of heat needed is
Answer:
The store energy in the inductor is 0.088 J
Explanation:
Given that,
Inductor = 100 mH
Resistance = 6.0 Ω
Voltage = 12 V
Internal resistance = 3.0 Ω
We need to calculate the current
Using ohm's law


Put the value into the formula


We need to calculate the store energy in the inductor



Hence, The store energy in the inductor is 0.088 J
Photons are particles of electromagnetic radiation.
The work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
<h3>What is normal force?</h3>
The force of contact is called the normal force. When the two surfaces are in contact with each other, then the normal force acts.
This force is applied by the solid bodies on each other in order to prevent the passing through each other.
A box slides down a frictionless incline, gaining speed. For this box, the value of work done by normal force has to be found out. Let's analyze the given condition.
- The body is gaining the speed, which means there is a change in kinetic energy.
- The change in kinetic energy is equal to the work done.
- The friction force is the product of coefficient of the friction and normal force.
- The friction force for the given case is zero. Thus, the normal force must be equal to the zero.
Thus, the work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
Learn more about the normal force here;
brainly.com/question/10941832
<span>Back in the day, one measured a printer's speed in CPM, which stands for characters per minute. Most of the modern printers that exist today, including the inkjet printer measure their speed in PPM, which is also known as pages per minute.</span>