Extinct<span> might be a word you associate with animals that lived long ago, like the dinosaurs, but did you know that over 18,000 species are classified as "threatened" (susceptible to extinction) today? Scientists involved in wildlife conservation have a tough job; they are in charge of determining what needs to be done to prevent a species from becoming extinct. Habitat, food supply, and impacts of local human populations are just a few of the factors these scientists take into account. It is a lot to keep track of for a single location, but the job becomes even harder when it is a migratory animal. In this science project, you will get a firsthand look at their job. You will access </span>real<span> data about migratory birds and use satellite images to analyze their habitats, then come up with a conservation plan to protect the species from extinction.</span>
<span> Using conservation of energy
Potential Energy (Before) = Kinetic Energy (After)
mgh = 0.5mv^2
divide both sides by m
gh = 0.5v^2
h = (0.5V^2)/g
h = (0.5*2.2^2)/9.81
h = 0.25m
</span>
Answer:
123 J transfer into the gas
Explanation:
Here we know that 123 J work is done by the gas on its surrounding
So here gas is doing work against external forces
Now for cyclic process we know that

so from 1st law of thermodynamics we have


so work done is same as the heat supplied to the system
So correct answer is
123 J transfer into the gas
Answer:
9.8 m/s/s
Explanation:
The numerical value, in meters per second squared, of the acceleration of an object experiencing true free fall is 9.8 m/s/s. This is called the acceleration due to gravity.
Air for a diver comes out of a high pressure tank at - Same- pressure compared to the water around the diver (metered by the regulator).
This means the lungs are inflated with - Highly pressurized- gas.
This does not adversely affect the diver when deep underwater, because the entire environment around the diver is at -Same - pressure.
If the diver suddenly surface, the air in the alveoli in the lungs will still be at - a higher - pressure compared to the air around the diver, which will be at - a lower - pressure.
The gas in the diver's lungs will - expand - and can damage the alveoli.