When one body(sun) exerts a force on a second body(planet), the second body simultaneously exerts a force equal in magnitude and opposite in direction of the first body. Which makes the planet orbit in path C.
Hope this helps!!
Answer:
B. Fluorescent lamps operate at a higher temperature than incandescent
Explanation:
Fluorescent lamps have a number of advantages over incandescent lamps which are given in the options given in A, C and D. The option available in B is a drawback, not an advantage. This is because it can give out and radiate more heat as a result of working at a higher temperature. Hence B option is correct.
Answer:
The electron's speed is 34007.35 m/s
Explanation:
It is given that,
Magnetic field, B = 0.34 T
Magnetic force on the electron, 
The electron follows a helical path. We have to find the speed of an electron. The formula for magnetic force is given by :

q = charge on an electron, 
v = velocity of an electron


v = 34007.35 m/s
Hence, this is the required solution.
Answer:
wouldnt a phone be one it takes pictures through reflection like a mirror
We need to see what forces act on the box:
In the x direction:
Fh-Ff-Gsinα=ma, where Fh is the horizontal force that is pulling the box up the incline, Ff is the force of friction, Gsinα is the horizontal component of the gravitational force, m is mass of the box and a is the acceleration of the box.
In the y direction:
N-Gcosα = 0, where N is the force of the ramp and Gcosα is the vertical component of the gravitational force.
From N-Gcosα=0 we get:
N=Gcosα, we will need this for the force of friction.
Now to solve for Fh:
Fh=ma + Ff + Gsinα,
Ff=μN=μGcosα, this is the friction force where μ is the coefficient of friction. We put that into the equation for Fh.
G=mg, where m is the mass of the box and g=9.81 m/s²
Fh=ma + μmgcosα+mgsinα
Now we plug in the numbers and get:
Fh=6*3.6 + 0.3*6*9.81*0.8 + 6*9.81*0.6 = 21.6 + 14.1 + 35.3 = 71 N
The horizontal force for pulling the body up the ramp needs to be Fh=71 N.