Answer:
1. 37.8J
2. 18 Billion Joules, 18 Gigajoules
3. 9.81 Billion Joules, 9.81 Gigajoules
Explanation:
Use the formulas provided,
KE=(1/2)mv^2 and PE=mgh, noting that g=9.81
mass density orbit time temperature surface conditions
distyance from sun
Action and reaction are the rocket fuel going backwards and the rocket going forward. 3
f=ma 2
the rocket was at rest, 1, until there was a resultant external force 1 at which point 2 came in, with 3 alongside
Answer: The correct answer is option C.
Explanation:
Weight = Mass × Acceleration
Let the mass of the space probe be m
Acceleration due to gravity on the earth = g
Weight of the space probe on earth = W

Acceleration due to gravity on the Jupiter = g' = 2.5g
Weight of the space probe on earth = W'



The weight of the space probe on the Jupiter will be 2.5 times the weight of the space probe on earth.
Hence, the correct answer is option C.