The magnitude of the centripetal acceleration of the car as it goes round the curve is 4.8 m/s²
<h3>Circular motion</h3>
From the question, we are to determine the magnitude of the centripetal acceleration.
Centripetal acceleration can be calculated by using the formula

Where
is the centripetal acceleration
is the velocity
and
is the radius
From the given information

and 
Therefore,



Hence, the magnitude of the centripetal acceleration of the car as it goes round the curve is 4.8 m/s²
Learn more on circular motion here: brainly.com/question/20905151
Answer:
Ball hit the tall building 50 m away below 10.20 m its original level
Explanation:
Horizontal speed = 20 cos40 = 15.32 m/s
Horizontal displacement = 50 m
Horizontal acceleration = 0 m/s²
Substituting in s = ut + 0.5at²
50 = 15.32 t + 0.5 x 0 x t²
t = 3.26 s
Now we need to find how much vertical distance ball travels in 3.26 s.
Initial vertical speed = 20 sin40 = 12.86 m/s
Time = 3.26 s
Vertical acceleration = -9.81 m/s²
Substituting in s = ut + 0.5at²
s = 12.86 x 3.26 + 0.5 x -9.81 x 3.26²
s = -10.20 m
So ball hit the tall building 50 m away below 10.20 m its original level
Question:
Consider a sample of helium gas in a container fitted with a piston as pictured below. The piston is frictionless, but has a mass of 10.0 kg. How many of the following processes will cause the piston to move away from the base and decrease the pressure of the gas? Assume ideal behavior.
I. Heating the helium. II.
II. toRemoving some of the helium from the container.
III. Turning the container on its side.
IV. Decreasing the pressure outside the container.
a) 0
b) 1
c) 2
d) 3
e) 4
Answer:
Only one process will cause the piston to move which is
i) Heating the helium
Explanation:
When helium is heated it becomes less dense or lighter. Heating the helium will cause an increase in volume which will make the piston to move away from the base. When the volume finishes increasing, the piston will stop moving which in turn will make the forces on both sides of the piston balanced, so the pressure inside will balance the weight of the piston and that of the atmosphere. From that we can see that there has been a pressure change as a result of heating.
Answer:
So if we need to cover 1000 meters. And we go at a speed of 4.3 m/s. That means that every 4.3 meters we cover is 1 second. So we divide both amd get
1000/4.3 = 232.56 is approx the answer. Also the meters cancel out because
m/(m/s) = m*s/m, cancels out giving s as a unit.
<h2><u>
Therefore the answer is 232.56 seconds</u></h2>
Answer:
The three ways thermal energy is transferred are;
1) Conduction
2) Convection
3) Radiation
Explanation:
1) The conduction of the heat from the open flame to the marshmallow is through the direct contact of the flame with the marshmallow, such that the flame the region of the combustion reaction, that produces light and heat touches the marshmallow
2) The convection process is the transfer of heat from the rising heated combustion products, as well as the heated air that rises from the flame
3) The radiation heat transfer is the transfer of the heat from the fire to the marshmallows directly by the heat the moves in the form of electromagnetic waves at temperatures above 1000 K, without the need for a medium, such that the marshmallow can be heated by the heat coming from side of the flame.