The denominator is 20
5X4= 20
Answer:
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
Step-by-step explanation:
for
I= ∫x^n . e^ax dx
then using integration by parts we can define u and dv such that
I= ∫(x^n) . (e^ax dx) = ∫u . dv
where
u= x^n → du = n*x^(n-1) dx
dv= e^ax dx→ v = ∫e^ax dx = (e^ax) /a ( for a≠0 .when a=0 , v=∫1 dx= x)
then we know that
I= ∫u . dv = u*v - ∫v . du + C
( since d(u*v) = u*dv + v*du → u*dv = d(u*v) - v*du → ∫u*dv = ∫(d(u*v) - v*du) =
(u*v) - ∫v*du + C )
therefore
I= ∫u . dv = u*v - ∫v . du + C = (x^n)*(e^ax) /a - ∫ (e^ax) /a * n*x^(n-1) dx +C = = (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
Every difference of squares problem can be factored as follows: a2 – b2 = (a + b)(a – b) or (a – b)(a + b). So, all you need to do to factor these types of problems is to determine what numbers squares will produce the desired results. Step 3: Determine if the remaining factors can be factored any further.
Answer:
7/2 or 3 1/2
hope this helps
have a good day :)
Step-by-step explanation:
Answer:
84=2l+2w
w=21
Step-by-step explanation:
84=2(l+w)
42=l+w
l=42-w
Area=l×w
A=(42-w)×w
Differentiate A=42w-w×w
with respective to "w".
dA/dw= 42-2w
For a minimum or maximum area
dA/dw=0
then, 42-2w=0
w=21
proving "A" is maximum when "w=21"
dA/dw>0 when w<21
dA/dw<0 when w>21
Therefore Area is maximum when "w=21"