1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gulaghasi [49]
2 years ago
15

There are 1,000 cans of cat food produced daily at a factory. in the meeting last week, the

Mathematics
1 answer:
BaLLatris [955]2 years ago
4 0

Using the binomial distribution, it is found that the true statement related to the number of cans of cat food the company expects to be dented is given by:

B. The factory can expect to have an average of 50 cans dented in a day.

<h3>What is the binomial probability distribution?</h3>

It is the probability of exactly<u> x successes on n repeated trials, with p probability</u> of a success on each trial.

The expected value of the binomial distribution is:

E(X) = np

In this problem, we have that there are 1000 cans, each with a probability of 1/20 of being dented, hence:

n = 1000, p = 1/20 = 0.05.

The expected value is then given by:

E(X) = np = 1000 x 0.05 = 50.

Researching the problem on the internet, the correct option is given by:

B. The factory can expect to have an average of 50 cans dented in a day.

More can be learned about the binomial distribution at brainly.com/question/24863377

#SPJ1

You might be interested in
Use the Law of Sines to find the measure of angle R to the nearest degree.
IrinaK [193]
\frac{\sin(R)}{PQ} = \frac{\sin(Q)}{PR}

\frac{\sin(R)}{24.7} = \frac{\sin(43^{\circ})}{16.9}

\sin(R) = 24.7*\frac{\sin(43^{\circ})}{16.9}

\sin(R) \approx 0.9967668

R \approx \arcsin(0.9967668)

R \approx 85.39137896^{\circ}

R \approx 85^{\circ}

The final answer is 85 degrees
4 0
3 years ago
Use the method in the Example to find the square roots of 1 + √3i
kiruha [24]

Answer:

\sqrt{1 + \sqrt{3} i}=\pm (1.58+i 0.548)

Step-by-step explanation:

Given

z = 1 + √3 i

Let \sqrt{1+\sqrt(3) i}=p+iq

Squaring both sides

1+\sqrt(3) i=p^2-q^2+2ipq

Comparing real and imaginary part

Re(LHS)=Re(RHS)

1=p^2-q^2...........................(1)

comparing Im(LHS)=Im(RHS)

√3=2pq

q=\frac{\sqrt{3}}{2p}

Substitute q in equation (1)

1=p^2-(\frac{\sqrt{3}}{2p})^2

p^4-p^2-0.75=0

Let x=p^2

x^2-x-0.75=0

x=\dfrac{1\pm \sqrt{1^2+4\times 0.75}}{2}

x=\frac{1\pm 4}{2}

we take only Positive value because p^2=x

x=2.5  

p^2=2.5

thus p=\pm 1.58

q=\pm 0.548

thus,

\sqrt{1 + \sqrt{3} i}=\pm (1.58+i 0.548)

5 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Please help solve this and show work
Dafna11 [192]

Answer: x=9

Step-by-step explanation:

7x+43=106

subtract 43 from both sides

7x=63

divide by 7

x=9

8 0
3 years ago
True or False? A circle could be circumscribed about the quadrilateral below.
BlackZzzverrR [31]

Answer: false


Step-by-step explanation: the answer is false because suplimentary angled dont add up to 180


3 0
3 years ago
Read 2 more answers
Other questions:
  • a penguin walks south. It completes the first 1/2 mile in 1/5 hour and continues walking at the same rate. What is the penguin's
    14·1 answer
  • If my goal is to test whether there is any difference in grocery prices between Piggly Wiggly and Publix, which among the follow
    11·1 answer
  • HELP ME ASP PLZ
    14·1 answer
  • Twenty nine is thirteen added to four times a number.What is the number
    14·1 answer
  • Can someone help me with this question
    10·1 answer
  • Regina drew a triangle with vertices at ( 1 , 2 ) , ( 3 , 3 ) , and ( 4 , 1 ) . She slides the triangle 2 units down to create a
    10·2 answers
  • Another 7th grade question
    13·1 answer
  • Help please I only a 10min to do this and I'm stuck on 30 and I have 50 to go
    11·1 answer
  • Heather opened a lemonade stand on her street. It costs her $5.25 to buy the supplies each day, and she sells lemonade for $1.50
    15·2 answers
  • What is a factor of thirty six?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!