Answer:
5 .07 s .
Explanation:
The child will move on a circle of radius r
r = 1.5 m
Let the velocity of rotation = v
radial acceleration = v² / r
v² / r = 2.3
v² = 2.3 r = 2.3 x 1.5
= 3.45
v = 1.857 m /s
Time of revolution = 2π r / v
= 2 x 3.14 x 1.5 / 1.857
= 5 .07 s .
Answer:
option (b)
Explanation:
mass of proton, mp = m
mass of deuteron, md = 2m
charge on proton, qp = q
charge on deuteron, qd = q
The magnetic force on the charged particle when it is moving is given by
F = q v B Sinθ
where, θ is the angle between the velocity and magnetic field.
Here, θ = 90°
Let v is the velocity of both the particle when they enters in the magnetic field.
The force on proton is given by
Fp = q x v x B ...... (1)
The force on deuteron is
Fd = q x v x B .... (2)
Divide equation (1) by equation (2)
Fp / Fd = 1
Thus, the ratio of force on proton to the force on deuteron is 1 : 1.
Thus, option (b) is correct.
Answer:
d = 19.796m
Explanation:
Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.
So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.
Next, you look for a kinematic equation that has these parameters and the one you should choose is:

Now by substituting values in, we get
d = 19.796m
Answer:
He can throw it away from himself.
Explanation:
Newtons Third Law says that everything has an equal, yet opposite reaction on other objects.