Answer:
it evaporats
Explanation:
because the sun is so hot that the water will turn into gas hope i helped
Answer:
<h3> 3.057m</h3>
Explanation:
According to law of gravitation;
F = GMm/d²
G is the universal gravitation
M and m are the masses
d is the distance between the masses
d² = GMm/F
d² = 6.67408 × 10-11 *3000*7000/0.0015
d² = 140.15568*10^-5/0.0015
d² = 1.4016*10^-3/0.0015
d² = 1.4016*10^-3/1.5*10^-3
d² = 0.9344*10
d² = 9.344
d = √9.344
d = 3.057m
Hence the distance between the two objects is 3.057m
Answer:
Height h = 37.8 m
Explanation:
Given
:
Velocity of car (v) = 98 km / h
Acceleration of gravity = 9.8 m/s²
Computation:
Acceleration of gravity = 9.8 m/s²
Acceleration of gravity = (98)(1,000 m / 3,600 s)
Acceleration of gravity = 27.22 m/s
By using law of conservation of energy
;
(1/2)mv² = mgh
h = v² / 2g
h = 27.22² / 2(9.8)
Height h = 37.8 m
Desired operation: A + B = C; {A,B,C) are vector quantities.
<span>Issue: {A,B} contain error (measurement or otherwise) </span>
<span>Objective: estimate the error in the vector sum. </span>
<span>Let A = u + du; where u is the nominal value of A and du is the error in A </span>
<span>Let B = v + dv; where v is the nominal value of B and dv is the error in B </span>
<span>Let C = w + dw; where w is the nominal value of C and dw is the error in C [the objective] </span>
<span>C = A + B </span>
<span>w + dw = (u + du) + (v + dv) </span>
<span>w + dw = (u + v) + (du + dv) </span>
<span>w = u+v; dw = du + dv </span>
<span>The error associated with w is the vector sum of the errors associated with the measured quantities (u,v)</span>
Answer:
B) boiling point
Explanation:
The movement of the particles causes the shape of the liquid to change. The liquid will flow and fill to the lowest part of the container, in the shape of the container
But the volume does not change. The limited amount of space between the particles means that the liquid has only very limited compressibility.