Answer: C) divide: distance ÷ velocity
Explanation:
The velocity equation is distance divided by time :
If we isolate we will have:
Hence, the correct option is C: distance divided by velocity.
Hi there!
Impulse = Change in momentum
I = Δp = mΔv = m(vf - vi)
Where:
m = mass of object (kg)
vf = final velocity (m/s)
vi = initial velocity (m/s)
Begin by converting grams to kilograms:
1 kg = 1000g ⇒ 145g = .145kg
Now, plug in the given values. Remember to assign directions since velocity is a vector. Let the initial direction be positive and the opposite be negative.
I = (.145)(-20 - 17) = -5.365 Ns
The magnitude is the absolute value, so:
|-5.365| = 5.365 Ns
Answer:
The distance traveled in 1 year is:
Explanation:
Given
--- speed
--- time
Required
The distance traveled
This is calculated as:
So, we have:
This gives:
-- approximated
The resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms)
Explanation:
In the United States Of America the standard voltage is 120 v and their frequency is 60 Hz
Standard wall outlet voltage is 120 V
The current in the lamp is 0.5 ampere
Resistance (R) = V/ I
= 120/0.5
= 240Ω (ohms)
Thus the resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms).
Answer:
Explanation:
Let the equilibrium position of third charge be x distance from q₁.
Force on third charge due to q₁
= 9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x²
Force on third charge due to q₂
= 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
Both the force will act in opposite direction and for balancing , they should be equal.
9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x² = 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
5 / x² = 2 / ( .4 - x )²
Taking square root on both sides
2.236 / x = 1.414 / .4 - x
2.236 ( .4 - x ) = 1.414 x
.8944 - 2.236 x = 1.414 x
.8944 = 3.65 x
x = .245 m
24.5 cm
So the third charge should be at a distance of 24.5 cm from q₁ .