(16.3 L) / (22.414 L/mol) x (4.0026 g He/mol) = 2.91 g
Answer:
To release 7563 kJ of heat, we need to burn 163.17 grams of propane
Explanation:
<u>Step 1</u>: Data given
C3H8 + 5O2 -----------> 3CO2 + 4H2O ΔH° = –2044 kJ
This means every mole C3H8
Every mole of C3H8 produces 2044 kJ of heat when it burns (ΔH° is negative because it's an exothermic reaction)
<u>Step 2: </u>Calculate the number of moles to produce 7563 kJ of heat
1 mol = 2044 kJ
x mol = 7563 kJ
x = 7563/2044 = 3.70 moles
To produce 7563 kJ of heat we have to burn 3.70 moles of C3H8
<u>Step 3: </u>Calculate mass of propane
Mass propane = moles * Molar mass
Mass propane = 3.70 moles * 44.1 g/mol
Mass propane = 163.17 grams
To release 7563 kJ of heat, we need to burn 163.17 grams of propane
Answer:
1.403x10²⁴ molecules
Explanation:
In order to calculate how many molecules of CO₂ are there in 102.5 g of the compound, we first<u> convert grams to moles</u> using its <em>molar mass</em>:
- 102.5 g ÷ 44 g/mol = 2.330 mol CO₂
Now we <u>convert moles into molecules </u>using <em>Avogadro's number</em>:
- 2.330 mol * 6.023x10²³ molecules/mol = 1.403x10²⁴ molecules