Answer:
runoff is he draining away of water (or substances carried in it) from the surface of an area of land, a building or structure, etc.
Explanation:
4. Molar mass of silver m Ms~=108 g/mol
Hence there are n=54*(1/108)=0.5 mols of Silver in 54 grams of Silver.
5. 6.3*(108/1)=680.4g
6. Avogadro's number : Na~=6.022×10^23<span>. </span>
6.0*(6.022*10^23/1)=36.132*10^23 atoms
7. Molar mass of Krypton : Mk=84 g/mol
112/84=1.33 moles of Kr
8. 1.93*10^24*(1/(6.022×10^23))=3.2 moles KF
9. Molar mass of Silicon : Ms=28 g/mol
86.2*(1/28)*(6.022×10^23/1)=18.5*10^23 atoms of silicon
10. Molar mass of Magnesium : M1=24 g/mol
4.8*10^24*(1/(6.022×10^23))*(24/1)=191 g Mg
Scientist and Chemical Engineers
Answer:
volume = 972.23ml
Explanation:
using general gas law
P1V1/T1 = P2V2/T2
765 x 585/293 = 443 x V2/282
1527.39 =443 x V2/282
1527.38 x 282 = 443 x V2
430695.78 = 443 x V2
V2 = 430695.68/443
V2 = 972.23mL
We have that all (ideal) gases obey the fundamental gas equation: PV=nRT where P is the Pressure, V is the Volume, n is the number of moles, R is a universal constant and T is the temperature in Kelvin. In this process, we have that both the number of moles and the temperature stays the same. So if we denote by i the initial conditions and by f the final conditions of the gas, we have:

. Hence, if we solve for the final Volume we get:

. Now we know all the other variables; substituting we get that the final volume is 6.7 L (6.716 L ).