Answer:
It means the chemical entity is a radical
Explanation:
When we talk of unsaturation, we are referring to the number of pi-bonds in a chemical entity. The alkane, alkene and alkyne organic family are used to as common examples to explain the term unsaturation.
While alkynes have 3 bonds, it must be understood that they have 2 pi bonds only and as such their degree of saturation is two.
In the case of an alkene, there is only one single pi bond and as such the degree of unsaturation is 1.
Now in this case, we have a fractional 0.5 degree of unsaturation alongside the 3 to make a total of 3.5. So what’s the issue here?
The fractional part shows that the chemical entity we are dealing with here is a radical. While the integer 3 shows that there are 3 pi-bonds, the half pi bond remaining tells us that there is a missing electron on one of the atoms involved in the chemical bonding and as such, the 1/2 extra degree of unsaturation tends to tell us this.
Kindly recall that a radical is a chemical entity within which we have at the least an unpaired electron.
Answer:no
Explanation:the heat will add more pressureand then it will pop.
Charles law gives the relationship between volume and temperature of gas.
It states that at constant pressure volume is directly proportional to temperature
Therefore
V/ T = k
Where V - volume T - temperature in kelvin and k - constant
V1/T1 = V2/T2
Parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
Substituting the values in the equation
267 L/ 480 K = V / 750 K
V = 417 L
Final volume is 417 L
For this problem we use the wave equation. It is expressed as the speed (c) is equal to the product of frequency (f) and wavelength (v).
c = v x f
We know the wavelength of the an red light which is 6.5 x 10^-7 m. Now, we solve for the wavelength of the unknown wave to see the relation between the two waves.
2.998 X 10^8 = 5.3 X 10^15 X v
v = 2.998 X 10^8 / (5.3 X 10^15) = 5.657 X 10^-8 m
Therefore, the wavelength of the unknown wave is less than the wavelength of the red light.