Solid particles hope this helped!
The de Broglie wavelength of a 0.56 kg ball moving with a constant velocity of 26 m/s is 4.55×10⁻³⁵ m.
<h3>De Broglie wavelength:</h3>
The wavelength that is incorporated with the moving object and it has the relation with the momentum of that object and mass of that object. It is inversely proportional to the momentum of that moving object.
λ=h/p
Where, λ is the de Broglie wavelength, h is the Plank constant, p is the momentum of the moving object.
Whereas, p=mv, m is the mass of the object and v is the velocity of the moving object.
Therefore, λ=h/(mv)
λ=(6.63×10⁻³⁴)/(0.56×26)
λ=4.55×10⁻³⁵ m.
The de Broglie wavelength associated with the object weight 0.56 kg moving with the velocity of 26 m/s is λ=4.55×10⁻³⁵ m.
Learn more about de Broglie wavelength on
brainly.com/question/15330461
#SPJ1
Answer:
One of the primary advantages of thermal power is that the generation costs are extremely low. No fuel is needed to generate the power, and the minimal energy needed to pump water to the Earth's surface can be taken from the total energy yield.
Explanation:
Answer:
Direction remains the same but velocity changes.
Explanation:
This tell us about the direction and magnitude of the acceleration acting on the cannonball throughout its duration of flight that its direction remains the same but its magnitude of the acceleration is continuously changing. The cannonball moves in the direction in which the cannon was fired while the velocity is highest after the fire but decreases when goes higher and when it comes back to the ground so its velocity increases against so we can say that both positive and negative acceleration occurs. Positive acceleration means increase in the magnitude of velocity whereas negative acceleration means decrease in velocity.
If it is GAINING mass, the kinetic energy increases because it's still moving. If it stopped, it would then become potential energy.
yw XD
(just answered the same question just different user)