Answer:
The mass of the cargo is 
Explanation:
From the question we are told that
The radius of the spherical balloon is 
The mass of the balloon is
The volume of the spherical balloon is mathematically represented as

substituting values


The total mass the balloon can lift is mathematically represented as

where
is the density of helium with a value of

and
is the density of air with a value of

substituting values


Now the mass of the cargo is mathematically evaluated as


<span>A boat would
produce the highest concentration of carbon monoxide in the exhaust system.
</span>Carbon monoxide<span> (CO) is a colorless, odorless, and tasteless gas that is
slightly less dense than air. It is toxic to </span>hemoglobic<span> <span>animals (both </span></span>invertebrate<span> <span>and
vertebrate, including humans) when encountered in concentrations above about 35 </span></span>ppm<span>.</span>
Dependant variable is something which you MEASURE during an experiment
So your answer would be : B
To answer the two questions, we need to know two important equations involving centripetal movement:
v = ωr (ω represents angular velocity <u>in radians</u>)
a = 
Let's apply the first equation to question a:
v = ωr
v = ((1800*2π) / 60) * 0.26
Wait. 2π? 0.26? 60? Let's break down why these numbers are written differently. In order to use the equation v = ωr, it is important that the units of ω is in radians. Since one revolution is equivalent to 2π radians, we can easily do the conversion from revolutions to radians by multiplying it by 2π. As for 0.26, note that the question asks for the units to be m/s. Since we need meters, we simply convert 26 cm, our radius, into meters. The revolutions is also given in revs/min, and we need to convert it into revs/sec so that we can get our final units correct. As a result, we divide the rate by 60 to convert minutes into seconds.
Back to the equation:
v = ((1800*2π)/60) * 0.26
v = (1800*2(3.14)/60) * 0.26
v = (11304/60) * 0.26
v = 188.4 * 0.26
v = 48.984
v = 49 (m/s)
Now that we know the linear velocity, we can find the centripetal acceleration:
a = 
a = 
a = 9234.6 (m/
)
Wow! That's fast!
<u>We now have our answers for a and b:</u>
a. 49 (m/s)
b. 9.2 *
(m/
)
If you have any questions on how I got to these answers, just ask!
- breezyツ
The first choice on the list is the correct one.