Answer:
e) indicated that the speed of light is the same in all inertial reference frames.
Explanation:
In 18th century, many scientists believed that the light just like air and water needs a medium to travel. They called this medium <em>aether</em>. They believed that even the space is not empty and filled with aether.
Michelson and Morley tried to prove the presence and speed of this aether through an interference experiment in 1887. They made an interferometer in which light was emitted at various angles with respect to the supposed aether. Both along the flow and against the flow to see the difference in the speed of light. But they did not find no major difference and thus it became the first proof to disprove the theory of aether.
It thus proved that the speed of light remains same in all inertial frames.
Also, it became a base for the special theory of relativity by Einstein.
Answer:
With the increase in depth, age of layer increases.
Explanation:
According to the law of superposition, the layer of the Earth that is present in the deep is considered as the oldest layer while on the other hand, those layer which is present on the top of all layers is considered as youngest layer of earth. When we move from the top layer towards the bottom layer, the age of layer increases or in other words, when we move upward the age of the layer decreases so label the layers of earth on the basis of this phenomenon.
Electrostatic force changes like the inverse square of the distance (just like gravity).
If you double the distance, you change the force to 1/4 of what it used to be.
After the move, Objects 1 and 2 attract each other with a force of (18/16) = 1.125 units .
Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.