Answer:
a

b

Explanation:
From the question we are told that
The child's weight is 
The length of the sliding surface of the playground is 
The coefficient of friction is 
The angle is 
The initial speed is 
Generally the normal force acting on the child is mathematically represented as
=> 
Note 
Generally the frictional force between the slide and the child is

Generally the resultant force acting on the child due to her weight and the frictional force is mathematically represented as

Here F is the resultant force and it is represented as 
=> 
=> 
=> 
=>
So

=> 
Generally the heat energy generated by the frictional force which equivalent tot the workdone by the frictional force is mathematically represented as

=> 
=> 
Generally from kinematic equation we have that

=> 
=> 
=> 
Answer:
Explanation:
The period of oscillation will remain unchanged because the period of oscillation of a pendulum does not depend upon the mass of the bob . Here monkey along with bunch of banana represents bob .
When the monkey and banana were at height h /2 , they have potential energy as well as kinetic energy . banana is separated from the system . It carried its total energy along with it . But the energy of monkey remained intact with it . So it will keep on moving as usual . So it will attain the same maximum height as before .
Hence the amplitude of oscillation too will remain unchanged .
<span>An ecosystem can only sustain so many organisms. That limit would be its carrying capacity. If the population goes above that number then other factors will cause the population to crash and then rebound to a constant level. </span>
Answer:
If the frequency of the motion of a simple harmonic oscillator is doubled , then maximum speed of the oscillator changes by the factor 2
Explanation:
We know that in a simple harmonic oscillator the maximum speed is given by
= 
Here A is amplitude which is constant , so from above equation we see that maximum speed is directly proportional to
of the oscillation .
Since 
= 2
Where
is the maximum speed when frequency is doubled .