Answer: 
Explanation:
According to the described situation we have the following data:
Horizontal distance between lily pads: 
Ferdinand's initial velocity: 
Time it takes a jump: 
We need to find the angle
at which Ferdinand jumps.
In order to do this, we first have to find the <u>horizontal component (or x-component)</u> of this initial velocity. Since we are dealing with parabolic movement, where velocity has x-component and y-component, and in this case we will choose the x-component to find the angle:
(1)
(2)
(3)
On the other hand, the x-component of the velocity is expressed as:
(4)
Substituting (3) in (4):
(5)
Clearing
:

This is the angle at which Ferdinand the frog jumps between lily pads
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )
Answer:
Sea-floor spreading occurs in the oceanic ridges. In there, volcanic activity, together with the gradual movement of the bottom, form new oceanic crust. This allows a better understanding of the continental drift explained by the theory of plate tectonics.
The greatest evidence for Sea-floor spreading is the oceanic trenches, the oceanic ridges, the magma protruding to the surface and the new seafloor.
In previous theories, continents were assumed to be transported across the sea. Harry Hess, in the 1960s, proposed the idea that the seabed itself moves as it expands from a central point. The theory is now accepted, and the phenomenon is thought to be caused by convection currents in the upper layer of the mantle.
Answer:
it will take him 200secs to run to the shops
(btw 200 seconds is 3minutes and 20secs)
Explanation:
distance = speed x time
time = distance / speed
1200 ÷ 6 = 200
time = 200seconds
hope this helps
brainliest please?
x