Answer:
= 85.7 ° C
Explanation:
For this exercise we will use the calorimetry heat ratios, let's start with the heat lost by the evaporation of coffee, since it changes from liquid to vapor state
Q₁ = m L
Where m is the evaporated mass (m = 2.00 103-3kg) and L is 2.26 106 J / kg, where we use the latent heat of the water
Q₁ = 2.00 10⁻³ 2.26 10⁶
Q1 = 4.52 10³ J
Now the heat of coffee in the cup, which does not change state is
Q coffee = M
(
-
)
Since the only form of energy transfer is terminated, the heat transferred is equal to the evaporated heat
Qc = - Q₁
M ce (
-
) = - Q₁
The coffee dough left in the cup after evaporation is
M = 250 -2 = 248 g = 0.248 kg
-Ti = -Q1 / M
= Ti - Q1 / M 
Since coffee is essentially water, let's use the specific heat of water,
= 4186 J / kg ºC
Let's calculate
= 90.0 - 4.52 103 / (0.248 4.186 103)
= 90- 4.35
= 85.65 ° C
= 85.7 ° C
pavement is defined as the surface of Road or sidewalk.
for example, the surface of Expressway.
There are two types of pavement.
rigid pavement which consists of one layer.
flexible pavement which consist of multiple layers.
While driving on roads of rural areas, if our right wheel moves off the pavement, we should always hold the steering wheel firmly and then take our foot off the pedal, then apply brake lightly until we are moving at a low speed.
if you run off the pavement, you should: turn the steering wheel quickly toward the road steer straight and slow down before attempting to return to the pavement steer straight ahead and speed up apply the brakes hard
To know more about pavement:
brainly.com/question/28456065
#SPJ4
Answer:
<em>v=40 m/s south</em>
Explanation:
<u>Momentum
</u>
It's a physical magnitude that measures the product of the mass by the velocity of a particle. Its units in the International System is kg.m/s and the formula is

Where m is the mass and v the velocity of the particle. If we wanted to solve for v, we have

The baseball has a momentum of 6.0 kg.m/s south and mass of 0.15kg, thus

The velocity is directed to the south
Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string = 
linear density of the string = 
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
K.E1=1/2×100×3²
=50×9
=450J
K.E2=1/2×100×36
=50×36
=1800J