1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
n200080 [17]
3 years ago
9

What is an organism's specific role in an ecosystem

Physics
2 answers:
KengaRu [80]3 years ago
8 0
The answer you are looking for is a Niche. I know since I studied this.


Hope this helped!
Harman [31]3 years ago
7 0
<span>Niche - </span><span>An organism's particular role in an ecosystem, or how it makes its living.</span>
You might be interested in
How do the three types of boundary's work together to keep the Earth at equilibrium?
Maurinko [17]
There are three types: divergent, convergent, and transform boundaries. I hope this helps.
8 0
3 years ago
Read 2 more answers
How much work is required to compress 5.05 mol of air at 19.5°C and 1.00 atm to one-eleventh of the original volume by an isothe
Rus_ich [418]

Explanation:

(a)  For an isothermal process, work done is represented as follows.

             W = -nRT ln(\frac{V_{2}}{V_{1}})

Putting the given values into the above formula as follows.

        W = -nRT ln(\frac{V_{2}}{V_{1}})

             = - 5.05 mol \times 8.314 J/mol K \times (19.5 + 273) K \times ln (\frac{\frac{V_{1}}{11}}{V_{1}})

             = -12280.82 \times ln (0.09)

             = -12280.82 \times -2.41

             = 29596.78 J

or,         = 29.596 kJ       (as 1 kJ = 1000 J)

Therefore, the required work is 29.596 kJ.

(b) For an adiabatic process, work done is as follows.

         W = \frac{P_{1}V^{\gamma}_{1}(V^{1-\gamma}_{2} - V(1-\gamma)_{1})}{(1 - \gamma)}

              = \frac{-nRT_{1}(11^{\gamma - 1} - 1)}{1 - \gamma}

              = \frac{-5.05 \times 8.314 J/mol K \times 292.5 (11^{1.4 - 1} - 1)}{1 - 1.4}

              = 49.41 kJ

Therefore, work required to produce the same compression in an adiabatic process is 49.41 kJ.

(c)   We know that for an isothermal process,

               P_{1}V_{1} = P_{2}V_{2}

or,       P_{2} = \frac{P_{1}V_{1}}{V_{2}}

                    = 1 atm (\frac{V_{1}}{\frac{V_{1}}{11}})

                    = 11 atm

Hence, the required pressure is 11 atm.

(d)   For adiabatic process,  

          P_{1}V^{\gamma}_{1} = P_{2}V^{\gamma}_{2}

or,       P_{2} = P_{1} (\frac{V_{1}}{V_{2}})^{1.4}

                    = 1 atm (\frac{V_{1}}{\frac{V_{1}}{11}})^{1.4}

                    = 28.7 atm

Therefore, required pressure is 28.7 atm.

6 0
4 years ago
The image below represents molecules in which state of matter? *
Aleks04 [339]

da answer is liquiddddddddd

3 0
3 years ago
T-Joe (65 kg) is running at 3 m/s. T-Brud (50 kg) is running at 4 m/s. What would be T-Joe's momentum?
Debora [2.8K]

Answer:

P_J=195N

Explanation:

From the question we are told that

Mass\ of T-joe\ M_J=65\\Velocity\ of T-joe\ V_J=3m/s\\Mass of\ T-Brud\ M_B=50kg\\Velocity\ of T-Brud\ V_B=3m/s\\

Generally the equation for momentum is mathematically given by

P=mv

Therefore

T-Joe momentum P_J

P_J=65*3

P_J=195N

5 0
3 years ago
A ball is thrown with an initial speed vi at an angle i with the horizontal. The horizontal range of the ball is R, and the ball
adell [148]

Answer:

Part a)

T = 2\sqrt{\frac{R}{3g}}

Part b)

v_x = \frac{\sqrt{3Rg}}{2}

Part c)

v_y = \sqrt{Rg/3}

Part d)

v = \frac{1}{2}\sqrt{13Rg}

Part e)

\theta_i = 33.7 degree

Part f)

H = \frac{13R}{8}

Part g)

X = \frac{13R}{4}

Explanation:

Initial speed of the launch is given as

initial speed = v_i

angle = \theta_i degree

Now the two components of the velocity

v_x = v_i cos\theta_i

similarly we have

v_y = v_i sin\theta_i

Part a)

Now we know that horizontal range is given as

R = \frac{v_i^2 (2sin\theta_icos\theta_i)}{g}

maximum height is given as

H = \frac{R}{6} = \frac{v_i^2 sin^2\theta_i}{2g}

so we have

v_i sin\theta = \sqrt{Rg/3}

time of flight is given as

T = \frac{2v_isin\theta_i}{g}

T = \frac{2\sqrt{Rg/3}}{g}

T = 2\sqrt{\frac{R}{3g}}

Part b)

Now the speed of the ball in x direction is always constant

so at the peak of its path the speed of the ball is given as

R = v_x T

R = v_x 2\sqrt{\frac{R}{3g}}

v_x = \frac{\sqrt{3Rg}}{2}

Part c)

Initial vertical velocity is given as

v_y = v_i sin\theta_i

v_i sin\theta = \sqrt{Rg/3}

Part d)

Initial speed is given as

v = \sqrt{v_x^2 + v_y^2}

so we will have

v = \sqrt{Rg/3 + 3Rg/4}

v = \frac{1}{2}\sqrt{13Rg}

Part e)

Angle of projection is given as

tan\theta_i = \frac{v_y}{v_x}

tan\theta_i = \frac{\sqrt{Rg/3}}{\sqrt{3Rg}/2}

\theta_i = 33.7 degree

Part f)

If we throw at same speed so that it reach maximum height

then the height will be given as

H = \frac{v^2}{2g}

H = \frac{13R}{8}

Part g)

For maximum range the angle should be 45 degree

so maximum range is

X = \frac{v^2}{g}

X = \frac{13R}{4}

3 0
3 years ago
Other questions:
  • You find it takes 200 N of horizontal force tomove an unloaded pickup truck along a level road at a speed of2.4 m/s. You then lo
    10·1 answer
  • A 6 N force and a 15 N force act on an object. The moment arm of the 6 N force is 0.4 m. If the 15 N 20. force provides 5 times
    12·1 answer
  • N a scientific investigation, what is the name for a prediction that can be tested?
    15·1 answer
  • Constanza is on a commuter train between Richville and Shoptown. The train takes 35 minutes to cover the distance between the tw
    6·1 answer
  • A chair of weight 90.0 N lies atop a horizontal floor; the floor is not frictionless. You push on the chair with a force of F =
    5·1 answer
  • A heat pump is to be used for heating a house in winter. The house is to be maintained at 70°F at all times. When the temperatur
    10·1 answer
  • If a model ship is scaled to the ratio of 1:1,200, what size is the real ship
    14·1 answer
  • A mechanism which uses mechanical energy to produce electrical energy is known as an) -
    6·1 answer
  • A Carnot engine with an efficiency of 30% operates with a high-temperature reservoir at 188oC and exhausts 2000 J of heat each c
    6·1 answer
  • 3.Three resistors of 25.0Ω, 30.0Ω, and 40.0Ω are in a series circuit with a 6.0-volt battery. What is the current in the circuit
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!