Given that the mass of the toy cart is 2.0 kg and and the acceleration is unknown, the normal formula would be a=f/m where a is acceleration, f is force and m is mass but the string's breaking strength is 40n so I think the formula in this case will be f is greater than m*a
40 is greater than 2a
40 is greater than 2a
40/2 is greater than 2a/2
20m/s² is greater than a
Therefore the maximum speed the toy cart should have should be less than 20m/s²
Answer:
a) 
b) imagen adjunta
Explanation:
a) Primero debemos hacer la conversión de 81 km/h a m/s, esto es 22.5 m/s.
Ahora, usando la ecuacion cinemática, en un movimiento acelerado tenemos:

Queremos encontrar la posición hasta detenerse, osea vf = 0.



b) Para este caso el gráfico se encuentra adjunto.
Espero que te sirva de ayuda!
Explanation:
Formula for angle subtended at the center of the circular arc is as follows.

where, S = length of the rod
r = radius
Putting the given values into the above formula as follows.

= 
= 
= 
Now, we will calculate the charge density as follows.

= 
= 
Now, at the center of arc we will calculate the electric field as follows.
E = 
= 
= 34.08 N/C
Thus, we can conclude that the magnitude of the electric eld at the center of curvature of the arc is 34.08 N/C.
Answer: C
X = Displacement of the spring
Hooke's law: It states that the applied force F is proportional to the displacement of spring .
F ∝ x
Where, x = displacement of spring in meters
F = force, measured in Newtons
In another words The force F is equal to the constant K times the disparagement.
F = k.x
Where k is constant and it depends on elastic material.
Spring has restorative force.
If the spring moves in opposite direction then,
F = - k.x
A negative sign indicates that the spring resists and force is to the left. The compression of the spring is greater than the restoring force.
Example: A mass 'm' stretches a spring at a displacement x.
Answer:
6 days.
Explanation:
From radioactivity, The expression for half life is given as,
R/R' = 2⁽ᵃ/ᵇ)................... Equation 1
Where R = original mass of the radioactive substance, R' = Remaining mass of the radioactive substance after decay, a = Total time taken to decay, b = half life.
Given: R = 80 g, R' = 10 g, b = 2 days.
Substitute into equation 1
80/10 = 2⁽ᵃ/²⁾
8 = 2⁽ᵃ/²⁾
2³ = 2⁽ᵃ/²)
Equating the base and solving for a
3 = a/2
a = 2×3
a = 6 days.