1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxTIMURxx [149]
1 year ago
13

3. Identify at least TWO acidic lakes or other bodies of water in Washington State.

Chemistry
1 answer:
poizon [28]1 year ago
7 0

Answer:

I cant find any answers for u unfortunately

Explanation:

hope u find it

You might be interested in
A gas has a volume of 4.25 m3 at a temperature of 95.0°C and a pressure of 1.05 atm. What temperature will the gas have at a pre
Goryan [66]

Answer:

\boxed {\boxed {\sf 82.7 \textdegree C}}

Explanation:

We are asked to find the temperature of a gas given a change in pressure and volume. We will use the Combined Gas Law, which combines 3 gas laws: Boyle's, Charles's, and Gay-Lussac's.

\frac {P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

Initially, the gas has a pressure of 1.05 atmospheres, a volume of 4.25 cubic meters, and a temperature of 95.0 degrees Celsius.

\frac {1.05 \ atm * 4.25 \ m^3}{95.0 \textdegree C}= \frac{P_2V_2}{T_2}

Then, the pressure increases to 1.58 atmospheres and the volume decreases to 2.46 cubic meters.

\frac {1.05 \ atm * 4.25 \ m^3}{95.0 \textdegree C}= \frac{1.58  \ atm *2.46 \ m^3}{T_2}

We are solving for the new temperature, so we must isolate the variable T₂. Cross multiply. Multiply the first numerator by the second denominator, then multiply the first denominator by the second numerator.

(1.05 \ atm * 4.25 \ m^3) * T_2 = (95.0 \textdegree C)*(1.58 \ atm * 2.46 \ m^3)

Now the variable is being multiplied by (1.05 atm * 4.25 m³). The inverse operation of multiplication is division, so we divide both sides by this value.

\frac {(1.05 \ atm * 4.25 \ m^3) * T_2}{(1.05 \ atm * 4.25 \ m^3)} = \frac{(95.0 \textdegree C)*(1.58 \ atm * 2.46 \ m^3)}{(1.05 \ atm * 4.25 \ m^3)}

T_2=\frac{(95.0 \textdegree C)*(1.58 \ atm * 2.46 \ m^3)}{(1.05 \ atm * 4.25 \ m^3)}

The units of atmospheres and cubic meters cancel.

T_2=\frac{(95.0 \textdegree C)*(1.58* 2.46 )}{(1.05 * 4.25 )}

Solve inside the parentheses.

T_2= \frac{(95.0 \textdegree C)*3.8868}{4.4625}

T_2= \frac{369.246}{4.4625} \textdegree C}

T_2 = 82.74420168 \textdegree C

The original values of volume, temperature, and pressure all have 3 significant figures, so our answer must have the same. For the number we calculated, that is the tenths place. The 4 in the hundredth place to the right tells us to leave the 7 in the tenths place.

T_2 \approx 82.7 \textdegree C

The temperature is approximately <u>82.7 degrees Celsius.</u>

3 0
3 years ago
A solution is prepared by dissolving 27.0 g of urea [(NH2)2CO], in 150.0 g of water. Calculate the boiling point of the solution
andrew11 [14]

<u>Answer:</u> The boiling point of solution is 101.56°C

<u>Explanation:</u>

Elevation in boiling point is defined as the difference in the boiling point of solution and boiling point of pure solution.

The equation used to calculate elevation in boiling point follows:

\Delta T_b=\text{Boiling point of solution}-\text{Boiling point of pure solution}

To calculate the elevation in boiling point, we use the equation:

\Delta T_b=iK_bm

Or,

\text{Boiling point of solution}-\text{Boiling point of pure solution}=i\times K_b\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}

where,

Boiling point of pure water = 100°C

i = Vant hoff factor = 1 (For non-electrolytes)

K_b = molal boiling point elevation constant = 0.52°C/m.g

m_{solute} = Given mass of solute (urea) = 27.0 g

M_{solute} = Molar mass of solute (urea) = 60 g/mol

W_{solvent} = Mass of solvent (water) = 150.0 g

Putting values in above equation, we get:

\text{Boiling point of solution}-100=1\times 0.52^oC/m\times \frac{27\times 1000}{60\times 150}\\\\\text{Boiling point of solution}=101.56^oC

Hence, the boiling point of solution is 101.56°C

5 0
3 years ago
A student tests two solutions with the same acid-base indicator. If the two solutions have different hydroxide ion concentration
sammy [17]
The answer is c the indicator will have different colors in the different solutions
 
8 0
3 years ago
Read 2 more answers
Under standard-state conditions, which of the following species is the best reducing agent? a. Ag+ b. Pb c. H2 d. Ag e. Mg2+
eimsori [14]

<u>Answer:</u> The correct answer is Option b.

<u>Explanation:</u>

Reducing agents are defined as the agents which help the other substance to get reduced and itself gets oxidized. They undergo oxidation reaction.

X\rightarrow X^{n+}+ne^-

For determination of reducing agents, we will look at the oxidation potentials of the substance. Oxidation potentials can be determined by reversing the standard reduction potentials.

For the given options:

  • <u>Option a:</u>  Ag^+

This ion cannot be further oxidized because +1 is the most stable oxidation state of silver.

  • <u>Option b:</u>  Pb

This metal can easily get oxidized to Pb^{2+} ion and the standard oxidation potential for this is 0.13 V

Pb\rightarrow Pb^{2+}+2e^-;E^o_{(Pb/Pb^{2+})}=+0.13V

  • <u>Option c:</u>  H_2

This metal can easily get oxidized to H^{+} ion and the standard oxidation potential for this is 0.0 V

H_2\rightarrow 2H^++2e^-;E^o_{(H_2/H^{+})}=0.0V

  • <u>Option d:</u>  Ag

This metal can easily get oxidized to Ag^{+} ion and the standard oxidation potential for this is -0.80 V

Ag\rightarrow Ag^{+}+e^-;E^o_{(Ag/Ag^{+})}=-0.80V

  • <u>Option e:</u>  Mg^{2+}

This ion cannot be further oxidized because +2 is the most stable oxidation state of magnesium.

By looking at the standard oxidation potential of the substances, the substance having highest positive E^o potential will always get oxidized and will undergo oxidation reaction. Thus, considered as strong reducing agent.

From the above values, the correct answer is Option b.

8 0
3 years ago
True or false: elements are atoms or molecules that have a net charge
denpristay [2]

Answer:

true

Explanation:

5 0
3 years ago
Other questions:
  • Which action is not an accomplishment of the Apollo missions?
    13·1 answer
  • Water is the only substance that is _____________ as a solid than as a liquid. Thus it is unique in its physical properties.
    7·1 answer
  • Calculate the molar mass of a compound from the following information. You find that the freezing point of benzene is 5.5 degree
    5·1 answer
  • A solution contains AgNO3 and Ba(NO3)2. What substance could be added to the solution to precipitate Ag ions, but leave Ba2 ions
    9·1 answer
  • Where do animals get glucose from
    5·2 answers
  • When discussing the Arrhenius equation and chemical / enzyme kinetics, which of the following statements is incorrect ? A. A cat
    12·1 answer
  • Use the periodic to write the electron configuration for rubidium (Rb) in noble-gas notation. . Rb: [Kr]s
    12·2 answers
  • What functional group does the molecule below have?<br><br> *two leg spider looking molecule*
    13·1 answer
  • For the reaction between ammonium phosphate and lead (IV) nitrate, producing ammonium nitrate and lead (IV) phosphate, how many
    14·1 answer
  • Given the balanced equation representing a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!