The mole fraction of KBr in the solution is 0.0001
<h3>How to determine the mole of water</h3>
We'll begin by calculating the mass of the water. This can be obtained as follow:
- Volume of water = 0.4 L = 0.4 × 1000 = 400 mL
- Density of water = 1 g/mL
- Mass of water =?
Density = mass / volume
1 = Mass of water / 400
Croiss multiply
Mass of water = 1 × 400
Mass of water = 400 g
Finally, we shall determine the mole of the water
- Mass of water = 400 g
- Molar mass of water = 18.02 g/mol
- Mole of water = ?
Mole = mass / molar mass
Mole of water = 400 / 18.02
Mole of water = 22.2 moles
<h3>How to de terminethe mole of KBr</h3>
- Mass of KBr = 0.3 g
- Molar mass of KBr = 119 g/mol
- Mole of KBr = ?
Mole = mass / molar mass
Mole of KBr = 0.3 / 119
Mole of KBr = 0.0025 mole
<h3>How to determine the mole fraction of KBr</h3>
- Mole of KBr = 0.0025 mole
- Mole of water = 22.2 moles
- Total mole = 0.0025 + 22.2 = 22.2025 moles
- Mole fraction of KBr =?
Mole fraction = mole / total mole
Mole fraction of KBr = 0.0025 / 22.2025
Mole fraction of KBr = 0.0001
Learn more about mole fraction:
brainly.com/question/2769009
#SPJ1
Missing question: Express the salt concentration in kg/m³.
Answer is: the salt concentration is 9.8 kg/m³.
m(NaCl) = 9.8 g ÷ 1000 g/kg.
m(NaCl) = 0.0098 kg.
V(solution) = 1 L = 1 dm³.
V(solution) = 1 dm³ ÷ 1000 dm³/m³.
V(solution) = 0.001 m³.
d(solution) = m(NaCl) ÷ V(solution).
d(solution) = 0.0098 kg ÷ 0.001 m³.
d(solution) = 9.8 kg/m³.
Yes. They are called compound machines because two or more simple machines were combined to create it.
An atomic number is <span>the number of protons in the nucleus of an atom, which determines the chemical properties of an element and its place in the periodic table or chart.</span>