Answer:
D
Explanation:
The building blocks or monomers of proteins are called amino acids. There are 20 different kinds of amino acids. The amino acids form long chains that are proteins. Therefore, proteins are polymers of amino acids.
Proteins are very important for the body because they have many different roles. They provide structure for tissues, act as enzymes, hormones and antibodies, aid in transportation and fluid regulation.
Therefore, the correct answer is D. a polymer of amino acids.
The question is incomplete, here is the complete question.
A chemist prepares a solution of copper(II) fluoride by measuring out 0.0498 g of copper(II) fluoride into a 100.0mL volumetric flask and filling the flask to the mark with water.
Calculate the concentration in mol/L of the chemist's copper(II) fluoride solution. Round your answer to 3 significant digits.
<u>Answer:</u> The concentration of copper fluoride in the solution is 
<u>Explanation:</u>
To calculate the molarity of solute, we use the equation:

We are given:
Given mass of copper (II) fluoride = 0.0498 g
Molar mass of copper (II) fluoride = 101.54 g/mol
Volume of solution = 100.0 mL
Putting values in above equation, we get:

Hence, the concentration of copper fluoride in the solution is 
Answer:
- <em><u>Passive solar energy</u></em>
Explanation:
First of all, you must know that you if you put an egg on a sidewalk you are dealing with energy from the Sun, i.e. solar energy, while geothermal energy is energy that comes from the inner of the Earth and biomass energy comes from plant or animal material.
The term passive solar energy refers to the fact that the energy of the sun is used directly for the intended task, which in this case is to cook the egg.
The term active solar energy refers to the fact that the energy of the Sun is converted into a different form of energy and then used for your purpose. For instance, if the energy of the Sun were used to produce electricity and then this electricity used to cook the egg, you would be using an acitve solar energy.
Answer:
Explanation:
Your strategy here will be to
use the chemical formula of carbon dioxide to find the number of molecules of
CO
2
that would contain that many atoms of oxygen
use Avogadro's constant to convert the number of molecules to moles of carbon dioxide
use the molar mass of carbon dioxide to convert the moles to grams
So, you know that one molecule of carbon dioxide contains
one atom of carbon,
1
×
C
two atoms of oxygen,
2
×
O
This means that the given number of atoms of oxygen would correspond to
4.8
⋅
10
22
atoms O
⋅
1 molecule CO
2
2
atoms O
=
2.4
⋅
10
22
molecules CO
2
Now, one mole of any molecular substance contains exactly
6.022
⋅
10
22
molecules of that substance -- this is known as Avogadro's constant.
In your case, the sample of carbon dioxide molecules contains
2.4
⋅
10
22
molecules CO
2
⋅
1 mole CO
2
6.022
⋅
10
23
molecules CO
2
=
0.03985 moles CO
2
Finally, carbon dioxide has a molar mass of
44.01 g mol
−
1
, which means that your sample will have a mass of
0.03985
moles CO
2
⋅
44.01 g
1
mole CO
2
=
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
∣
∣
a
a
1.8 g
a
a
∣
∣
−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the number of atoms of oxygen present in the sample.