Answer:
model of mountain formation
Explanation:
The formation of mountains takes millions of years. This formation of mountains involves so much processes that do not occur quickly.
Hence, a model that can adequately show something that happens very slowly is the model for the formation of mountains.
Answer:
(a) Hypoeutectic
(b) Alpha solid, aluminium
(c) 70% α
, 30% β
(d) 97.6% α, 2.4% β
(e) 97.6% α, 2.4% β
(f) 97% α, 3% β
Explanation:
(a) The eutectic composition for Al Si alloy is 11.7 wt% silicon, therefore, an Al-4% Si alloy is hypoeutectic
(b) For the hypoeutectic alloy, aluminium, Al, is expected to form first, such that the aluminium content is reduced till the point it gets to the eutectic proportion of 11.7 wt% silicon
(c) At 578°C we have
% α: Al (11 - 4)/(11 - 1) = 70% α
% L: Si 100 - 70 = 30% β
(d) At 576°C we have
α: 99.83% Si (99.83 - 4)/(99.83- 1.65) = 97.6% α
β: 1.65% Si (4 - 1.65)/(99.83- 1.65) = 2.4% β
(e) Primary α: 1.65% α (99.83 - 4)/(99.83 - 1.65) = 97.6% α
Eutectic 4% Si = 100 - 97.6 = 2.4% β
(f) At 25°C we have;
α%: (99.83 - 4)/(99.83 - 1) = 97% α
β%: 100 - 97 = 3% β.
Answer:
3
three half-filled orbitals each capable of forming a single covalent Bond and an additional lone - pair of electrons
Answer: 77.4 mL
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is:
where,
= initial pressure of dry gas = (760 - 17.5) mmHg= 742.5 mm Hg
= final pressure of dry gas at STP = 760 mm Hg
= initial volume of dry gas = 85.0 mL
= final volume of dry gas at STP = ?
= initial temperature of dry gas =
= final temperature of dry gas at STP =
Now put all the given values in the above equation, we get the final volume of wet gas at STP
Volume of dry gas at STP is 77.4 mL.