Answer:
lol number 8 is x= i, -i ,
, -4 so u are correct.
and number 7 is x=
or ![\sqrt[5-i]\sqr\frac{23}{8}](https://tex.z-dn.net/?f=%5Csqrt%5B5-i%5D%5Csqr%5Cfrac%7B23%7D%7B8%7D)
Step-by-step explanation:
Answer:
Since Darcie wants to crochet a minimum of 3 blankets and she crochets at a rate of 1/5 blanket per day, we can determine how many days she will need to crochet a minimum of 3 blankets following the next steps:
- Finding the number of days needed to crochet one (1) blanket:
\begin{gathered}1=\frac{1}{5}Crochet(Day)\\Crochet(Day)=5*1=5\end{gathered}
1=
5
1
Crochet(Day)
Crochet(Day)=5∗1=5
So, she can crochet 1 blanket every 5 days.
- Finding the number of days needed to crochet three (3) blankets:
If she needs 5 days to crochet 1 blanket, to crochet 3 blankets she will need 15 days because:
\begin{gathered}DaysNeeded=\frac{NumberOfBlankets}{Rate}\\\\DaysNeeded=\frac{3}{\frac{1}{5}}=3*5=15\end{gathered}
DaysNeeded=
Rate
NumberOfBlankets
DaysNeeded=
5
1
3
=3∗5=15
- Writing the inequality
If she has 60 days to crochet a minimum of 3 blankets but she can complete it in 15 days, she can skip crocheting 45 days because:
AvailableDays=60-RequiredDaysAvailableDays=60−RequiredDays
AvailableDays=60-15=45DaysAvailableDays=60−15=45Days
So, the inequality will be:
s\leq 45s≤45
The inequality means that she can skip crocheting a maximum of 45 days since she needs 15 days to crochet a minimum of 3 blankets.
Have a nice day!
Answer:
8
Step-by-step explanation:
Since Noah has decided to buy 4 apples, that means he has decided to spend $4 on apples. Deducting that from $20, you are left with $16. Divide this total by the cost of each mango, $2, and you get the result as 8 mangos.
Answer:
And we can find this probability using the complement rule:
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using the complement rule:
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.