1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
2 years ago
13

Which is an example of a way that

Physics
1 answer:
geniusboy [140]2 years ago
4 0

Answer:

C Thy make the force exert all at once

You might be interested in
Why do scientists believe that dark matter exists even though it cannot be seen?
poizon [28]
Because although they cannot see it, they can see it's influence on objects that can be seen, and it's effects.
3 0
3 years ago
Put the waves in order from shortest to longest wavelength
FromTheMoon [43]

Answer:

b, a, c

Explanation:

The middle one has the shortest wavelength, then it's the top one and the last one has the longest wavelength.

3 0
3 years ago
A boy is trying to roll a bowling ball up a hill, as shown in the image below. If
kherson [118]

The minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s. The correct option is D.

<h3>What is mechanical energy?</h3>

The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.

M.E = KE +PE

A boy is trying to roll a bowling ball up a hill. The friction is ignored.  The ball must have to reach the top of the hill with a velocity. The acceleration due to gravity, g = 9.8 m/s²

The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.

M.E bottom of hill = M.E on top of hill

Kinetic energy + Potential energy = Kinetic energy  + Potential energy

1/2 mu² + 0 =  0 + mgh

At the top of hill, the velocity will become zero. So, final kinetic energy is zero.

Substituting the values, we have

1/2 x u² = 9.8 x 22.5

u = sqrt [2 x9.8 x 22.5 ]

u= 21 m/s

Thus, the minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s.

Learn more about mechanical energy.

brainly.com/question/13552918

#SPJ1

4 0
2 years ago
Two long, parallel wires separated by 3.50 cm carry currents in opposite directions. The current in one wire is 1.55 A, and the
vaieri [72.5K]

Answer:

Therefore,

The magnitude of the force per unit length that one wire exerts on the other is

\dfrac{F}{l}=2.79\times 10^{-5}\ N/m

Explanation:

Given:

Two long, parallel wires separated by a distance,

d = 3.50 cm = 0.035 meter

Currents,

I_{1}=1.55\ A\\I_{2}=3.15\ A

To Find:

Magnitude of the force per unit length that one wire exerts on the other,

\dfrac{F}{l}=?

Solution:

Magnitude of the force per unit length on each of @ parallel wires seperated by the distance d and carrying currents I₁ and I₂ is given by,

\dfrac{F}{l}=\dfrac{\mu_{0}\times I_{1}\times I_{2}}{2\pi\times d}

where,

\mu_{0}=permeability\ of\ free\ space =4\pi\times 10^{-7}

Substituting the values we get

\dfrac{F}{l}=\dfrac{4\pi\times 10^{-7}\times 1.55\times 3.15}{2\pi\times 0.035}

\dfrac{F}{l}=2.79\times 10^{-5}\ N/m

Therefore,

The magnitude of the force per unit length that one wire exerts on the other is

\dfrac{F}{l}=2.79\times 10^{-5}\ N/m

7 0
3 years ago
Read 2 more answers
A straight wire of length 0.53 m carries a conventional current of 0.2 amperes. What is the magnitude of the magnetic field made
olga55 [171]

Explanation:

It is given that,

Length of wire, l = 0.53 m

Current, I = 0.2 A

(1.) Approximate formula:

We need to find the magnitude of the magnetic field made by the current at a location 2.0 cm from the wire, r = 2 cm = 0.02 m

The formula for magnetic field at some distance from the wire is given by :

B=\dfrac{\mu_oI}{2\pi r}

B=\dfrac{4\pi \times 10^{-7}\times 0.2\ A}{2\pi \times 0.02\ m}

B = 0.000002 T

B=10^{-5}\ T

(2) Exact formula:

B=\dfrac{\mu_oI}{2\pi r}\dfrac{l}{\sqrt{l^2+4r^2} }

B=\dfrac{\mu_o\times 0.2\ A}{2\pi \times 0.02\ m}\times \dfrac{0.53\ m}{\sqrt{(0.53\ m)^2+4(0.02\ m)^2} }

B = 0.00000199 T

or

B = 0.000002 T

Hence, this is the required solution.

4 0
3 years ago
Other questions:
  • If you hold your arm outstretched with palm upward, the force to keep your arm from falling comes from your deltoid muscle. assu
    14·1 answer
  • A solid 0.7150-kg ball rolls without slipping down a track toward a loop-the-loop of radius r = 0.9150 m. what minimum translati
    13·1 answer
  • When a battery, a resistor, a switch, and an inductor form a circuit and the switch is closed, the inductor acts to oppose the c
    14·1 answer
  • Two resistors, of R1 = 3.93 Ω and R2 = 5.59 Ω, are connected in series to a battery with an EMF of 24.0 V and negligible interna
    8·1 answer
  • A 30-kg child starts at the center of a playground merry-go-round that has a radius of 2.1 m and rotational inertia of 500 kg⋅m2
    8·1 answer
  • How long does it take to fall 500 meters?
    10·1 answer
  • Who is the most genius scientist in the world​
    7·1 answer
  • A cat runs 80 meters to the left in 16 seconds, then 50 meters to the right in 10 seconds, then 70 meters to the left in 14 seco
    9·1 answer
  • Describe responding Variable
    8·1 answer
  • On which factor potential energy depends?​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!