At First, there is chemical Energy( in your muscels) which is Used to Push down the spring. This Energy becomes the Energy of the spring, which increases until you stop pushing. If you Put your hand away, the Energy of the spring will become kinetic energ. This Energy is at the highest Level the Moment the book ist Leaving the spring. Afterwards, the kinetic Energy decreases while the Gravitational Potential Energy increases.
Explanation:
The given data is as follows.
Concentration of caffeine = 2.97 mg/oz
Number of oz in a can = 12 oz
Therefore, the concentration of caffeine in one can is calculated as follows.
=
mg
= 35.64 mg
= 
Since, it is given that lethal dose is 10.0 g. Hence, number of cans are calculated as follows.
No. of cans = 
= 
= 280.58
= 281 (approx)
Thus, we can conclude that 281 cans of soda would be lethal.
Answer:
39.81 N
Explanation:
I attached an image of the free body diagrams I drew of crate #1 and #2.
Using these diagram, we can set up a system of equations for the sum of forces in the x and y direction.
∑Fₓ = maₓ
∑Fᵧ = maᵧ
Let's start with the free body diagram for crate #2. Let's set the positive direction on top and the negative direction on the bottom. We can see that the forces acting on crate #2 are in the y-direction, so let's use Newton's 2nd Law to write this equation:
- ∑Fᵧ = maᵧ
- T₁ - m₂g = m₂aᵧ
Note that the tension and acceleration are constant throughout the system since the string has a negligible mass. Therefore, we don't really need to write the subscripts under T and a, but I am doing so just so there is no confusion.
Let's solve for T in the equation...
- T₁ = m₂aᵧ + m₂g
- T₁ = m₂(a + g)
We'll come back to this equation later. Now let's go to the free body diagram for crate #1.
We want to solve for the forces in the x-direction now. Let's set the leftwards direction to be positive and the rightwards direction to be negative.
The normal force is equal to the x-component of the force of gravity.
- (F_n · μ_k) - m₁g sinΘ = m₁aₓ
- (F_g cosΘ · μ_k) - m₁g sinΘ = m₁aₓ
- [m₁g cos(30) · 0.28] - [m₁g sin(30)] = m₁aₓ
- [(6)(9.8)cos(30) · 0.28] - [(6)(9.8)sin(30)] = (6)aₓ
- [2.539595871] - [-58.0962595] = 6aₓ
- 60.63585537 = 6aₓ
- aₓ = 10.1059759 m/s²
Now let's go back to this equation:
We have 3 known variables and we can solve for the tension force.
- T = 2(10.1059759 + 9.8)
- T = 2(19.9059759)
- T = 39.8119518 N
The tension force is the same throughout the string, therefore, the tension in the string connecting M2 and M3 is 39.81 N.
Explanation:
The given data is as follows.

Voltage = 2.50 V
Hence, calculate the equivalence capacitor as follows.


= 
C = 
Now, we will calculate the charge across each capacitance as follows.
Q = CV
= 
=
=
Thus, we can conclude that
is the charge stored on each given capacitor.
Answer:
Rubber or plastic covers are bad conductors of electricity. So they do not allow the electric current to pass through it.
Explanation:
Rubber and plastic are bad conductors of electricity, therefore when handling a tool with a rubber handle, the electricity will not pass through it.