Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:f 30
Explanation: I am not really sure but try this
Answer:
Explanation:
Let h be the height .
initial velocity in first case u = 0
final velocity v = 6 m /s
acceleration due to gravity g = 9.8 m /s²
v² = u² + 2 g h
6² = 0 + 2 x 9.8 x h
h = 1.837 m .
For second case u = 3 m /s
v² = u² + 2 gh
= 3² + 2 x 1.837 x 9.8
= 9 + 36
= 45 m
v = 6.7 m /s
The electrical equivalent of one horsepower is 746 watts in the International System of Units (SI), and the heat equivalent is 2,545 BTU (British Thermal Units) per hour. Another unit of power is the metric horsepower, which equals 4,500 kilogram-metres per minute (32,549 foot-pounds per minute), or 0.9863 horsepower.