Answer:
Time period, 
Explanation:
Given that,
The quartz crystal used in an electric watch vibrates with a frequency of 32,768 Hz, f = 32768 Hz
We need to find the period of the crystal's motion. The relationship between the frequency and the time period is given by :

T is the time period of the crystal's motion.
Time period is given by :

So, the time period of the crystal's motion is
. Hence, this is the required solution.
Answer:
a = 2 [m/s²]
Explanation:
To be able to solve this problem we must make it clear that the starting point when the time is equal to zero, the velocity is 5 [m/s] and when three seconds have passed the velocity is 11 [m/s], this point is the final point or the final velocity.
We can use the following equation.

where:
Vf = final velocity = 11 [m/s]
Vo = initial velocity = 5 [m/s]
a = acceleration [m/s²]
t = time = 3 [s]
![11 = 5 + a*3\\6=3*a\\a= 2[m/s^{2} ]](https://tex.z-dn.net/?f=11%20%3D%205%20%2B%20a%2A3%5C%5C6%3D3%2Aa%5C%5Ca%3D%202%5Bm%2Fs%5E%7B2%7D%20%5D)
Formula for kinetic energy is 1/2mv^2 so that answer should most probably be 94521.6J
Answer:
(a) 30 m/sec
(b) -50 m/sec
Explanation:
We have given initial velocity of ball u = 50 m/sec
Acceleration due to gravity 
(a) Time t = 2 sec
Now according to first equation of v = u-gt
So v=50-10×2=30 m/sec
(b) Time t = 10 sec
Now according to first equation of motion
So final velocity v = u-gt = 50-10×10 =-50 m/sec
Answer:
Displacement: 6.71 m, Direction: 63.4 degrees north of east
Explanation:
In the attached image we can aprecciate each one of the movements of the parade. Let's say that the parade started from the origin (point (0,0)) then it moves to the east 4 blocks it means now the parade is located at point (4,0).
Then the parade went to the south three blocks, so it moves to the coordinate (4,-3). After this the parade went to the west one block so the new coordinate point is (3, -3).
And finally the movement of the 0 parade was 9 blocks to the north. It means the final point is now (0,9) - (3,-3) = (3,6)
And the displacement will be defined by the folliwing vector operation:

We know that the magnitude of the displacement vector is defined by the phytagoras theorem

And the angle will be defined by:
tan(beta)=3/6
beta = tan^-1(6/3)
beta = 63.43°