To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,


Where,
m = Mass of spacecraft
M = Mass of Earth
r = Radius (Orbit)
G = Gravitational Universal Music
v = Velocity
Re-arrange to find the velocity



PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,


From the speed it is possible to use find the formula, so



Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.
PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is



Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.
Answer:
The height of the cliff from which the ball was dropped from is 224.4m.
\overline{v}={\frac{\Delta x}{\Delta t}}
Given the data in the question;
Initial velocity of the ball;
Time taken by the ball to reach the ground;
Distance or Height of the cliff from which the ball was thrown from;
To get the height of the Cliff, we use the Second Equation of Motion:
Where s is the distance or height, is the initial velocity, t is the time and a is the acceleration. Since the ball was thrown down from a certain height (cliff), its is now under the influence of gravity. acceleration due to gravity;
Hence, the equation becomes
We substitute the given values into the equation
Therefore, the height of the cliff from which the ball was dropped from is 224.4m
Explanation:
You would know a decomposition reaction occurred if the reactants separated. For example from AB → A+B.
Now if you look at your options only 1 works out for that equation. Letter A.
From the compound K2CO3 it split up to K2O +CO2
It cannot be letter B because synthesis/combination occurred. The same goes for letter C. Letter D, single displacement occurred.
Again, the answer is A.
Correct choices are marked in bold:
travel in straight lines and can bounce off surfaces --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces
travel through space at the speed of light --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light,
)
travel only through matter --> FALSE; electromagnetic waves can also travel through vacuum
travel only through space --> FALSE, electromagnetic waves can also travel through matter
can bend around objects --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits
move by particles bumping into each other --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved
move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave
The anwser is 1.475124 horsepower.