Answer:
Microlensing.
Explanation:
This techniques is called Microlensing.
Microlensing is a method of gravitational lensing where light from a backdrop point of origin is curved to develop distorted, numerous and/or lightened images by the gravity field of a foreground lens.
This method is very effective in discovering planets that are far-far from earth.It is actually an astronomical effect that was predicted by Albert Einstein's general theory of relativity.
Answer:
ΔV=0.484mV
Explanation:
The potential difference across the end of conductor that obeys Ohms law:
ΔV=IR
Where I is current
R is resistance
The resistance of a cylindrical conductor is related to its resistivity p,Length L and cross section area A
R=(pL)/A
Given data
Length L=3.87 cm =0.0387m
Diameter d=2.11 cm =0.0211 m
Current I=165 A
Resistivity of aluminum p=2.65×10⁻⁸ ohms
So
ΔV=IR

ΔV=0.484mV
Answer:
c) may also be conserved
Explanation:
Momentum is conserved in both elastic and inelastic type of collisions.
But the differences is that:
In an ELASTIC type of collisions, KINETIC ENERGY IS ALSO CONSERVED.
whereas, In an INELASTIC type of collision, KINETIC ENERGY IS NOT CONSERVED.
So unless until type of collision is specified, we can not say anything about the conservation of kinetic energy after collision.
Hence, may also be conserved is the appropriate option here.
Answer:
Here's the Density Formula: D = M/V
Q: How does mass affect density?
A: <em>Mass is a factor in density, the density is proportional to the mass. So as the mass increases, so does the density, provided the volume remains constant.</em>
Q: How does volume affect density?
A:<em> If an object has a larger mass than its volume it has a high density, if an object has a smaller mass than its volume it has a lower density.</em>
Explanation:
<em><u>I really Hope this Helps!!</u></em>
<u>Answer:</u>
The ball is rolling at a speed of 0.02 meter per second.
<u>Step by step explanation:</u>
We are given that there is a 800 gram bowling ball rolling in a straight line. If its momentum is given to be 16 kg.m/sec, we are to find its velocity.
For this, we will use the formula of momentum.
<em>Momentum = mass × velocity</em>
16 = 800 × velocity
Velocity = 16/800 = 0.02 meter per second