Answer:
The answer is below
Explanation:
The separation technique is used for separating immiscible liquids.
When separating, the stopper has to be removed when draining the lower layer so as to prevent a vacuum. If vacuum is allowed, the draining rate will reduce and stop.
The liquid should be mixed by shaking the funnel and then opening the stopcock so as the vent out gases.
When near interface between the layers, you should set your eye level so that you do not drain up to the second layer.
After completely draining the first layer, the second layer should be collected in a new flask.
After mixing the solutions in a separatory funnel, the stopper should be removed and the liquid should be mixed thoroughly and the layers allowed to separate. When you get close to the interface between the layers, get eye level with the funnel and slow the draining until the first layer is collected. Switch to a new flask to collect the second layer.
The mass percentage is 15.1465%.
Answer:
Explanation:
Option B is the correct answer
Answer:
The result is 3.859 in which we use four significant figures.
Explanation:
We start by solving the mathematical operation :

The result for the operation is 3.859438 but the numbers in the operation are given with four significant figures and that is why we are going to use four significant figures to express the result
To express 3.859438 with four significant figures we use the first four digits that appear from left to right starting by the first digit that is different to zero
In this case : 3.859 will be the result with four significant figures.
We also use a rule that says : To decide if the last significant figure remains the same we look for the value of the digit at its right.
If that number is greater than or equal to 5 ⇒ we sum one to the last significant figure
For example 3.859738 = 3.860 with four significant figures because the ''7'' is greater that 5
If that number is less than 5 ⇒ the last significant figure remains the same
In our case : 3.859438 = 3.859 because ''4'' is less than ''5''
Answer:

Explanation:
1. Calculate the initial moles of acid and base

2. Calculate the moles remaining after the reaction
OH⁻ + H₃O⁺ ⟶ 2H₂O
I/mol: 0.0053 0.005 00
C/mol: -0.00500 -0.005 00
E/mol: 0.0003 0
We have an excess of 0.0003 mol of base.
3. Calculate the concentration of OH⁻
Total volume = 53 mL + 25.0 mL = 78 mL = 0.078 L
![\text{[OH}^{-}] = \dfrac{\text{0.0003 mol}}{\text{0.078 L}} = \textbf{0.0038 mol/L}\\\\\text{The final concentration of OH$^{-}$ is $\large \boxed{\textbf{0.0038 mol/L}}$}](https://tex.z-dn.net/?f=%5Ctext%7B%5BOH%7D%5E%7B-%7D%5D%20%3D%20%5Cdfrac%7B%5Ctext%7B0.0003%20mol%7D%7D%7B%5Ctext%7B0.078%20L%7D%7D%20%3D%20%5Ctextbf%7B0.0038%20mol%2FL%7D%5C%5C%5C%5C%5Ctext%7BThe%20final%20concentration%20of%20OH%24%5E%7B-%7D%24%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.0038%20mol%2FL%7D%7D%24%7D)